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SUMMARY OF WORK

This document contains a complete reproduction of the Ph.D.

dissertation of G. L. Main. The following paragraphs outline (

chapter by chapter ) the results of the research carried out p

under this contract.

.* Chapter I develops the basic principles of the thermionic

convertor and its formulation. Since the formulation uses many

approximations out of computational necessity, we present an

* overview of these approximations and the reasoning behind them. .

The fluid mechanical nature of the formulation yields some

fundamental insight into how the sheath affects the convertor's

performance, and gives some quantitative results on performance.

Chapter 2 carries out the formulation of the convertor for the

general case and then for the isothermal electron case. These "

results are entirely conventional. We center on the isothermal t

electron case for its simplicity in explaining emitter sheath

effects.

Chapter 3 on sheaths advances collisionless sheath theory to

• -; - ., .. .... -. . . . . . . . . . . . . . .... . ... , -. . . . . • ,
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cover the sheath phenomena under consideration. Previous sheath

*- formulations have contained several mathematical simplifications

which are inpompatible with the study of these sheath phenomena.

The simplifications are 1) monoenergetic ions from the plasma, 2)

monoenergetic emitted electrons, and 3) that the sheath potential

drop is large. Further, for these corrections, it is shown that

the "Bohm" criterion for matching the sheath to the plasma must

be generalized.

Chapter 4 presents isothermal results for the thermionic

convertor including the effects of surface emission, trapped ions

and reflected ions. The general result found here is that,

contrary to intuition, a higher plasma density at the emitter

increases arc-drop. All three emitter sheath phenomena produce a

lower net ion loss rate and yield higher plasma density at the ,

emitter.

Chapter 5 presents the results of non-isothermal calculations

using an implicit numerical algorithm to confirm the isothermal

results with ion reflection. However, detailed non-isothermal

calculations with trapped ions surface emission ions are not

carried out because the combination of the non-isothermal

algorithm and the full collisionless sheath algorithm would

require large amounts of CPU time.

Chapter 6 presents the conclusions of this work.

. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . ..' - . . . . . . . . . . ... .
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CHAPTER 1: INTRODUCTION

1.1 The Cesium Diode Convertor

1.2 Formulation for the Convertor

1.3 Emitter Sheath Effects

( .

S

The thermionic energy convertor is perhaps the simplest and

most direct heat engine in existence. It converts heat directly

into electrical power by thermionic emission. The device

* essentially consists of two electrodes separated by a gap (

typically .25 mm )containing cesium vapor at a low pressure (

typically 1 torr ). One of the two plates Cthe emitter "I is

heated by an external source to 1500 - 1730 K and the other the .

collector ) is kept at 750 - 00 K by an external sink. The

hotter of the two plates emits electrons therm ionicall w i-h a

0 greater average velocity and a far greater density than the

cooler plate. Because of the diofference in emitted density i and

velocity, a potential rise develops from the emitter to the

collector. Consequently, electrical power is generated directly.

The convertor could operate with a vacuum gap; however a vcuhe '
CI

coolr pate Beaus of he iffrene i emiteddeni:, an

velo..........ten.ia....se....e.ops....... he....tter ... .h . .'*-."...

....... .......

.. d. o.. .. . . . . . . . . . . .........
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gap is impractical because an extremely small gap C on the order

of 1 micron or less ) would be required to prevent the build up

of a space charge of electrons which limits current density.

Cesium is introduced into the gap to overcome the space charge

effects because cesium ionizes easily C a first ionization energy

of 3.d9 eV ). The cesium diode convertor, in its ignited mode,

maintains a plasma electron temperature of approximately 3000 K

which supports the ionization of the cesium.

Emitter sheath phenomena are important in thermionic energy

convertors because the emitter sheath forms the boundary

conditions for the plasma in the gap and controls both the ion

loss rate and the loss rate of hot ( 3000 K ) plasma electrons to

the emitter. This thesis examines three expected emitter sheath

phenomena and their effects on convertor performance: 2 1)

reflection of ions coming from the plasma, 2) ions trapped in the

• double emitter sheath, and 3) surface emission ions. Inclusion

of these three phenomena combined with the elimination of

previous sheath approximations requires careful analysis and

C calculation of the sheath structure. It is shown that the "bohm"

1 At 1 micron approximately 5 amps/cmt could pass through the

convertor under typical ccnditions.

2 By ignited mode, we mean a plasma arc in which the electron

temperature is greater than the temperatures of the electrodes
bounding the plasma.

( The collector sheath does not have similar effects of any

significance because its low temperature makes it essenzially
non-emitting.

.Ct:

~ ~. . . . . . . . . .



-3- CHAPTER 1

matching condition must be generalized to insure that self-

*. consistancy prevails throughout the entire sheath and not just at- I
the plasma-sheath interface. Further, it is shown that plasma

ion distribution coming into that sheath must have its low energy

0 ions "cut off" to produce a self-consistant collisionless sheath, I

and that each of these emitter sheath phenomena reduce the

normalized C by plasma density ) net ion loss rate to the

emitter.

Each of these phenomena also raise the normalized plasma

density adjacent to the emitter. The higher plasma density at

the emitter causes a greater increase in the loss of hot plasma

electron energy to the emitter than the corresponding decrease in

the loss of ionization energy C carried by the ions ) to the

l emitter. Therefore these emitter sheath phenowena increase arc-

drop. Within the limitations of the current thermionic convertor

formulation, all three of these phenomena C which become

significant at low currents ) steepen the current-voltage

characteristic. At low current densities, the present thecry

shows that the collector sheath height decreases, resulting in a

larger electron diffusion velocity than can be justified for the

continuum model used in the plasma region. The result of lower

performance at lower current is in agreement with experimtal

studies, but the limitation imposed by the formulation prev\ent

theoretical examination of the lower current region in whach a

The limitations of the present formulation result from the
asymptotic division of the plasma into a neutral plasma and a
collisionless sheath.

* ~~-. o.....
..... ..... ..... .... ..... ..... ....
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plateau of improved performance is found.

The remainder of this chapter develops the basic principles of

the thermionic convertor and its formulation. Since the

formulation uses many approximations out of computational

necessity, we present an overview of these approximations and the 0

reasoning behind them. The fluid mechanical nature of the

formulation yields some fundamental insight into how the sheath

0 affects the convertor's performance, and gives some quantitative

results on performance.

Chapter 2 carries out the formulation of the convertor for the
0

general case and then for the isothermal electron case. These

results are entirely conventional. We center on the isothermal

eectron case for its simplicity in explaining emitter sheath .---- ,

effects.

Chapter 3 on sheaths advances collisionless sheath theory to

• cover the sheath phenomena under consideration. Previous sheath p

formulations have contained several mathematical simplifications

which are incompatible with the study of these sheath phenomena.

C The simplifications are 1) monoenergetic ions from the plasma, 2) j

monoenergetic emitted electrons, and 3) that the sheath potential

drop is large. Further, for these ccrrections, it is shown that

the "Bchm" criterion for matching the sheath to the plasma -. st

be generalized.

Chapter 4 presents isothermal results for the thermlonic

convertor including the effects of surface emission, trapped ions

i- .'

.4..4.%* 4.. 4 ~ . 4*.*. . . . . . . . . . . . . . . . °.-
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and reflected ions. The general result found here is that,

* contrary to intuition, a higher plasma density at the emitter

increases arc-drop. All three emitter sheath phenomena produce a

lower net ion loss rate and yield higher plasma density at the

emitter.

Chapter 5 presents the results of non-isothermal calculations

using an implicit numerical algorithm to confirm the isothermal

results with ion reflection. However, detailed non-isothermal S

calculations with trapped ions surface emission ions are not

carried out because the combination of the non-isothermal

(" algorithm and the full collisionless sheath algorithm would 5

require large amounts of CPU time.

Chapter 6 presents the conclusions of this thesis.

1.1 The Cesium Diode Convertor

Figure 1.1.1 is a schematic diagram of the cesium diode

convertor. The emitter is heated externally to temperature TE

which is typically 1750 K and the collector is cooled to

C.C temperature TC which is typically 750 K. The gap space, d, or- .

convertor length, which is typically .25 mm, seperates -he

emitter from the collector. The cesium reservoir, which is
U

sometimes imbedded in the collector, is kept at temperature, R'

to maintain the desired cesium pressure ( typically 1 torr ) in

the gap. The electrical load is connected across the emitter and

collector to produce power. Figure 1.1.2 is an experimental

(- .-

* % *.*~ * *~.. . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .
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• T T -I 750k 'k

C*.ium
* Rs~e-rvior

Figure 1.1.1 The Cesium Diode Convertor

result showing actual thermionic convertor performance under

these conditions. s It should be noted that at reasonable outout

current densities 1 10 amp/cm ), the output voltage is o, the

order of 0.5 vc2ts. A basic understanding of the thermicnic

convertor output is gained by developing the ideal thericnic

convertor ( nc space charge effects ) in fig. 1.1.3. in the

s The experimental device shown here is swept through voltage .-

from -0.4 to 0.8 volts by an external sine wave generator a-: 60
Hz. What is shown as output voltage is the applied voltage. The
convertor is producing power when the output voltage is greater
than zero.

(

. . . . . . .. . . . . . . . . . . . . . . . .. ... .. .. . . . -, , . ,, . . . . . , "
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Figure 1.1.2 Actual Thermionic Convertor Performance

from Thermo-Electron Progress Report No. 48

ideal case, potential varies linearly across the gap because the

2 2Poisson eq,,atio. in the absence of space charge is d 0/dx = 0.

Case a is current saturation in which all electrons escaping the

emitter ( the emitter work function is 0 E )arrive at :he

coliector ( the collector work function is ). The qua-.:-.izy

V~u is the output voltage. In case b the potential is flat and

ou
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464

V.,,t

ooH ]11! i

............

0 I ×,o

x .- iA

Figure 1.1.3 The Ideal Convertor

the current is still at saturation. In case c the convertor is

operating in the Boltzmann region. This region is so named

because the net current density drops off exponentially with

increasing output volzage. In the Boltzmann region the ret

current density as a function of output voltage is:

while in the saturation region:

S)

J~o. ,
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where JR is the Richardson emitted current,

-Tit A ze-  TE (3)

and where

A 120 k

If, for instance, TE = 1500 K and *E = 2.12 eV then J = 20

2
amp/cm . We have assumed the collector emits no electrons, and

therefore a lower collector work function always improves

performance. This assumption is very good under the usual

conditions in the thermionic convertor ( = 1.6 eV, TC = 750 K

) because the collector emitted current is 10 times smaller teen

the emitter's emitted current.

The experimental results clearly show the Boltzmann region,

except 1) the curve is steeper than exponential, 2) there is

sometimes a plateau at the base of the Boltzmann region, and 3)

the output voltage is lower than ideal because of plasma losses

known as arc-drop. Previous work 6 has shown that part of the

steepness can be explained by the ionization kinetics of the

plasma. In this work we show that part of the steepness can be

explained by the sheath effects. All three of the emitter sheath

phenomena considered here increase arc-drop and decrease output

voltage. Since all three phenomena become more significant at

' Lawless, J.L., The Plasma Dynamics and Ionization Kihetics of
The..ionic Energy Conve:sion, Ph.D. Thesis, Princeton University,

.:.- :

(|

"'- -'- ' -" " "- - " "" ... • .. - . " .. .- '-, -'. . -. .. . '..'. -. . ,-.,-. ".-'.-',. .-. -.. '.,.-'. .,..,,,.- .'. ".:Z .

e~o Q~o " .°.-".".
.
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low current densities, a steeper curve results. We had also

wished to explain the plateau region theoretically because of its

locally lower arc-drop. It is believed that the plateau, which

sometimes occurs at low current density, results from the

collapse of the plasma arc and is the result of surface emission

as the source of ions for the plasma. Unfortunately, our

theoretical calculations cannot be carried into this region

because the formulation ( the asymptotic division of the plasma

into a collisionless sheath and a neutral continuum plasma region

) breaks down.

rP

1.2 Formulation for the Convertor

Best performance from the thermionic convertor is obtained

experimentally when the following empirical relationship is

satisfied:

Pcsd = 10 mil-torr, (1)

where pcs is the neutral cesium pressure and d is the gap. This

corresponds to about 15 ion mean free paths in the gap. Also,

under this condition, the convertor operates in an ignited mode

with the plasma electrons at approximately 3000 K ( the energy

necessary to maintain the plasma electrons at a higher

tem erature than the emitter temperature is supplied by the arc-

drop ). At this electron temperature ( or lower temperature when

the convertor is not ignited such as in the plateau ), the

ionization is about 10%. This can be seen from the Saha equationL

.'.-. " "

- •.. . . ..°°o2° •. . . . .• ° ".. . ... ... C - * '* - *'**.* .****" -.-
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for equilibrium plasma density,

2. ,s ' -( 2)

where

n = neutral density (1/cm 3),n

3n. = ion density (1/cm3),i

- fi= first ionization energy, and

T = plasma electron temperature.e

Under the conditions, p = 1 torr, T = 3000 K and V = 3.89
cse fi

eV, we have

15 3n = 6.44 X 10 (1/cm3 ) andn

14 3n. = 8.63 X 10 (1/cm).

Since the convertor is only 15 mean free paths long, the plasma

does not attain its equilibrium plasma density and recombinaeion

is usually negligible. Therefore the ions are generated by the

high electron temperature in the gap and are lost to the emitter

and collector by diffusion. Surface emission of ions is

generally not a factor in supporting the plasma as can be seen

from the Saha-Langmuir equation,

where

J = surface emission ion current,
cs+

n cs = neutral cesium number density, and

M = cesium atom mass.
cs

Under the previously used conditions,

j cs+ 1 .6 X 10
5 amps/cm

2

=..,.-.. ........... ........... ................ ,............ ..... ...... ... ... . .-.
"." '"." .'-'. ","".'L. .'2.';." '".' ." ".".'" '". " " -, ','" "'." . "."',"''".' .".'" '".' .'-" " ".. . . . . . . ." .".. .'".""..."..". ".".."-.""."."."...".•.... .".."... .
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In the convertor, Debye length,

Ln (4)

which is length scale for charge seperation in the plasma and

9 therefore the sheath length scaling, is small compared to both

the electron and ion mean free paths,

Therefore, we divide the convertor into a neutral plasma region

terminated by collisionless sheaths at the electrodes. Figure

1.2.1 is potential distribution in the convertor ( delfnitions of

terms are detailed in chap. 2 ) Based on the asymptotic

matching of the neutral plasma regicn to the collisicnless

sheaths, the sheath results produce boundary conditions for the -

neutral plasma. The plasma region is treated as fluid C with a

source term for ionization ) with conservation of mass, momentum,

and energy. Conservation of mass requires a boundary condition

for the ion loss rate which is found from the sheath net ion f:ux

rate. Conservation of momentum results in a net change in

potential through the plasma region which is added to the change

through the sheaths. And conservation of energy C which is

dominated by electron energy ) requires boundary conditions or

plasma electron temperature. Examination of fig. 1.2.1 shows

that ions leaving the plasma for the emitter ( at 0) can be

reflected by the back of the sheath if AX is greater than zero.
S

Ions entering the sheath are accelerated by the front sheath and

decelerated by the back sheath. Those ions entering the sherth

.........................

................. ~. ... ... .. .....
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1.3 Emitter Sheath Effects
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through the plasma and therefore reducing arc-drop. However,

- this is not the case. While the plasma density at the emitter

increases slightly, plasma density at the collector decreases.

Consequently total resistance increases.

9 S

S S

( S

(. .

.( °

.. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . ,
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CHAPTER 2: THERMIONIC CONVERTOR FORMULATION

2.1 General Formulation 0

2.2 Isothermal Formulation

C

In this chapter we develop the formulation for the quasi-

neutral plasma region of the thermionic convertor and the

boundary conditions for it. The boundary conditions contain

fluxes of electrons and ions that must be determined from the

sheaths and therefore the sheath is critical to the formulation.

Sheaths are considered in detail in the next chapter. The first

section is the general formulation for the non-isothermal plasma

electron case ( finite electron thermal conductivity ), and the

second section is specialized to the isothermal case. The

general formulation follows closely the notation of Lawless 1 and

the isothermal formulation follows closely the notation of Lam.

2 However, the isothermal formulation has been generalized to

1 Lawless, J.L., The Plasma Dynamics and Ionization Kinetics of

Thermionic Energy Conversion, Ph.D. Thesis, Princeton University,
1981, chap. 2.

* . .%
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eliminate the assumption of high sheaths which has previously

* been used to simplify the electron dynamics. Lawless developed

an explicit unsteady numerical scheme for the general non-

isothermal case. However, the explicit scheme is slow because

* stability requires small time steps. In appendix C we develop an

implicit numerical scheme which eliminates the stability

constraint and speeds up the Lawless scheme by the number of

* Qspace grids squared. Even the implicit scheme is slow and it is

also difficult to gain physical insight from direct numerical

results. Therefore we develop the isothermal formulation which

is faster and easier to analyse. Most of the results in this

thesis are based on the isothermal formulation. Appendix B

contains the isothermal programs.

2.1 General Formulation

* In this section, which follows the notation of Lawless "

chap.2 ), we develop the general non-isothermal formulation for

the quasi-neutral region of the thermionic convertor. We assume

that the convertor is one-dimensional since convertors typically
p

have a gap of .25 mm while the plates are 10 cm in diameter.

Following Lawless, we present the conservation equations, then

reduce them to convenient and useful forms. We next present and

discuss the approximations to be used, and resulting parabolic

P.D.E.s ( first order in time and second order in space ) which

--------------------

' Lam, S.H., Preliminary Report on Plasma Arc-Drop in Thermionic
in Thermionic Energy Converters. Princeton Unversity, 1976.

4 0° 0. ° ., .°._0. ° .° .,.. .= °...% = .°.. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . ..'. . . ...., .. . . . .. ," " .-.. . " ° •-'_/-,l,-~ l- -" """-""". -" """" .. ,- . .....- , '.'., ",. ... ".. . . . .. . .-' -. .. -.'.. .,- . ",,,. ,.-"-
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are used to carry out the numerical calculations. Finally, we

discuss the boundary conditions for these equations whose flux

rates ( electrons and ions ) are derived from the sheaths.

The conservation equations we develop are: mass of ions and

electrons, momentum of ions and electrons, and energy of

electrons.

* Conservation of mass of ions and electrons is:

9n, , , " P" l
j x

-€where

r = neU = electron flux,e e e

r =nu ion flux,

u= mean electron velocity,

* ui = mean ion velocity,

n electron number density,

n. = ion number density,

" (n) = net rate of ionization.

Conservation of momentum for ions and electrons is:

_( ax - Px +S,, :::
(2)

n;-;

-. . o° . to . . o. . . . .
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* where

mt electron mass,

SM ion mass,

P = electron pressure,

o P, = ion pressure,

q = electron charge,

r Vi = potential,

S ea(p ) = exchange of momemtum from neutrals toeto

* electrons,

Se.(P)= exchange of momemtum from ions to

* electrons,

cp)S(P)= exchange of momemtum from neatrals to

ion.

Note: in this thesis, potentials, *,I,X, are defined such that

increasing potential repels electrons. This is in contrast to

the usual convention and is done so because electrons are of

principal interest.

( Conservation of electron energy is:

+ f.7(3) + 0 .° .

where

. -"
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= mue /2 + 
3kTe /2 = stagnation energy,

h = t + pe/n = stagnation enthalpy,
e e

s (E) = collisional and ionization energy source

term,

q= electron heat conduction flux.

Other useful conservation equations can be derived from

eqs.1,2 and 3. Also, from this point forward we invoke the

quasi-neutral approximation, n = n = n.. From conservation of

mass ( eq.l ) we have

• ~(4) -..
aJ- o

where

• J q(r - ri) = net current density.eP

Equation 4 results from subraction of eqs.1 and using the quasi-

neutral approximation to equate the time derivatives of density.

From conservation of momentum for ions and electrons, we have

where

p = pe + p = total plasma pressure.

We have added the two momentum equations and consequently have S

eliminated the terms, Sei(P) and na(q*)/8x, which represent

at--e-
. ...C_ .. £.'. , .'3- . ' ' ' . ._... - ,. , - . - .. , .. q...... ' ', '. " ' ' .-. .L' ' " ' ' ' ' -' -' -' '-'-
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exchange of momentum between electrons and ions and the momentum

* exchanged with the field. From electron energy conservation, we
I

derive

I ,,. ( p,. (6)

* by differentiation of a product. Finally, the electric potential
3

term can be eliminated from the energy equation by subtracting

the electron momentum equation multiplied by ue:

+" (re) -t) S dt
C7.5(7)

0 + , De-- - te( -5 / Se/"

These three conservation equations, which are just the first

three moments of the Boltzmann equation, cannot be solved without

constitutive equations for pressure, heat flux and the

collisional terms. In order to produce the necessary

constitutive relations, we assume that the electron and ion

distributions in the plasma are near-Maxwellian and therefore we

can approximate ( ideal gas laws ),

pn kTe
n nk (8)

-..(

where

I

-q -- .- ,'-.i .JS. ,. ' _o , _, . 4'_ ._,_ , , ....- *..*-.,. . .. . . . .. . . . . . . . . . . . . . . . . . . . .-.. .". .'-.. . . ... .- '."-.. . . .-...- '
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T - plasma electron temperature,
e

T,= T = ion and neutral temperature,
n

k = Boltzmann's constant.

Also, because of the near-Maxwellian assumption, we can make the

first order approximation,

* = (9)

where

k = electron thermal conductivity.e

The previous two models ( electron heat flux and electron

pressure ) are not totally consistant since eq.8 assumes an

isotropic Maxwellian electron distribution while the existence of

an electron heat flux requires a non-isotropic distribution.

For the collision terms, we assume momentum transfer is

proportional to the difference of mean species velocity,

where

V = electron-atom collision frequency,

Vei = electron-ion collision frequency,

Via = ion-atom collision frequency.
a.-. . .- ,
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The quantities veal Vei, Vis and ke must be determined. This is

covered extensively by Lawless. One further assumption is used,

namely, that, the substantial time derivatives in the momentum

equations ( Du/Dt ) are small. This is justified for two

* reasons: first, au/at is small because the mean time between

collisions is on the order of 10 nsec while all characteric time

scales in the equations are much greater, and second, uau/ax is

* small when the Mach number is small ( electron or ion ). The

first part is always easily satisfied. The second part is not

well satisfied near the electrodes for the ions, and not well

satisfied near the electrodes for the electrons when the sheath

heights are low.

We now introduce the definition of ambipolar flux and

resulting equations:

where

/ --..

-- eo (12) - :

The quantity r is called ambipolar flux and ji and Vea are called

mobilities. With these definitions and assumptions we can write

eq.5 ( ion and electron momentum ) as

Similarly, we can write conservation of mass as

-~& )(2~e +(/Jst(Ali (14)4
IPAd'"
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and conservation of energy as

27 4- e "-'I

n,4eq , nl ,,

Two final approximations are used to close these equations:

CE) - Ch)

WE (16)

A

and

5tY~) ) n&>fe2fe
(17)

The first states that ionization is the only volume source term

for electron energy where E is first ionization energy. The
0

second is a model for ionization and recombination. The quantity

a called the ionization coefficient, B is the recombination

coefficient and N is the neutral density. Again, the choice of

this model and its coefficients is covered in Lawless.

Now that the conservation equations and the constitutive

relations are established, we can derive boundary conditions for

mass and energy. These boundary conditions contain fluxes of

electrons and ions which are obtained from the sheath results.

The boundary conditions for mass come from eq.13,

0 -f(18)

The quantities u and J are the fluxes through the sheaths. The

...................................................... ................ ........ .................... ......-..
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subscripts 0 and 1 denote the emitter and collector plasma-sheath

interfaces respectively. The boundary conditions for electron

energy are

2 P.~ -T (k-,-P7)
(19)

where

rE = flux of electrons from the emitter into the

plasma,
(o

TE = emitter temperature,

VE = emitter sheath height,

VC = collector sheath height.

We have assumed the collector emits nothing.

2.2 Isothermal Formulation

In this section the corrected isothermal model, based on the

isothermal model of Lam, and including ion reflection at the

emitter, is developed. Since we encounter both low emitter and

low collector sheath heights as a consequence of ion reflection

and trapped ions, the assumption of Boltzmann plasma electron

distributions at the plasma-sheath interface must be abandoned.

At both the emitter and collector the low sheaths return few

plasma electrons, leaving the distributions largely one sided.

tt

• " - . .
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Furthermore, at the emitter sheath emitted electrons must be

taken into account. Thus the ratio of electrons moving toward

the sheath to the total density of electrons at the sheath edge

is not 1/2, as in the Boltzmann assumption.

6C.

VOUT

i. ___AXS '10 
ICD

SLO

ICI

Figure 2.2.1 The Potential Distribution in the Convertor

ItI
In fig. 2.2.1 we define the potentials in the convertor. All"i -

of the potentials are nondimensionalized by emitter temperature

as follows:

~ (1)

S. . -i--
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where

x nondimensional potential,

* potential,

q electron charge,

k Boltzmann's constant,

TE = emitter temperature.

We also use the following terminology for various potentials in

the convertor:

E = emitter work function,

AX = back sheath height,

AX = reflective potential,s

XE = emitter sheath height,

Axp plasma potential drop,
pm

Vd arc-drop,

xC =collector sheath height,

f = collector work function,

V convertor output voltage.
out

Inspection of fig. 2.2.1 yields immediately the following

relations which will be useful later:

.............................................................

......................................
- - o" -°-.."-o.o.- .- . .. . . . . . . . . .... . . . . . . . . . . . ..". . . . . ..-,. . . . ..-..-°..-. ",-° .'. '. ".-. °. ' .' . -. , - " , - . .- . ". °. " ".- •
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V Xa (Ar (~- 4)-A X (2)

6]

V= (x -X) - AXr. (3)

Some further preliminary definitions are also needed. We have

the Richardson current density of electrons from the emitter,

.) 12 j0 T" (A,) r. - ) xP (4
F' em

The emitted current density which crosses the emitter sheath

potential peak into the convertor plasma region is

0" =  -ax ) 1> o,

(5)
J = ..", ,& xso.

We also define the net current density through the convertor, J,

and the normalized current density,

3/ (6)

Electron temperature is nondimensionalized as

er= Te/. (7)

where T is the plasma electron temperature which, in this
e

section, is constant by the isothermal assumption. Finally we

have the thermal speeds,

(2e = (8)

....... .............. ~ . i
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= . (9) m

The isothermal formulation is developed from here in the same

way as the general formulation except that we take full advantage

of the isothermal assumption by looking only at the global

conservation equations instead of the local ones used in the

0 general formulation. We then assume that the transport

properties, collision frequencies, and the ionization source

coefficient are constant across the convertor because of the

isothermal assumption. Also we find only the steady state

solution. We carry out this development by deriving the global

conservation equations for the isothermal case ( current,

*I momentum, and electron energy ) and then reducing these to a set

of three simultaneous equations in the variables T, XE, and XC.

3 These equations are nonlinear and solved numerically using a

positive definite Newton's method explained in appendix B.

First we consider conservation of current. The collector is

assumed to emit nothing, therefore at the collector plasma-sheath

interface we have

-- e (10)

where a is the fraction of the total plasma density at the

2 In some cases the the actual calculations are carried out using
different variables when XE or xC are small or zero.In the case,
for instance, of a single ion repelling emitter sheath we use j
because XE is zero. -

E.. . ............. .....
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collector sheath which is moving toward the collector and n(l) is

the total plasma density at the plasma-collector sheath

interface. Because we continue to assume that the plasma

electron distribution there is Maxwellian, we can write aas

l+&e~~du.. (.1

which takes into account the plasma electrons reflected by the

collector sheath. We still assume that the plasma electron

distribution coming into the collector sheath is Maxwellian and

that it does not have any velocity shift because the sheath is

expected to be electron repelling. In the limit of a high

collector sheath, a, = 1/2 and we have a fully Boltzmann

distribution of electrons at the collector sheath edge. The

situation at the emitter is more complex because the emitted

electrons must be taken into account. We have the back scattered

current density, JBS' which is the plasma electron current

density moving into the emitter,

- 7 Xur (12)

where n(O) is the total plasma density at the emitter sheath-

plasma interface and a0 is the fraction of total plasma density

at the interface moving toward the emitter.

Continuity of electron current demands

.-(13)

which can be written as

.. "T . .

p ---
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oft Tei+ (14)

This can be rewritten using eqs.3 and 6 as

.-..15)

The quantity a0 can be written as

~ (16)

0
where

NII.

is the electron Mach number at the emitter. This is just an

application of eq.13.

Electron energy conservation is developed by considering

energy exchange with the emitter and collector and energy lost to

ionization. Power carried into the plasma by emitted electrons

is

?~ (17)

Power returned to the emitter is

Power flowing into the collector is

P J(2-r++m.V) (19)

Ionization power loss is

.('.
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~. (20)

where Jion is the total ion current into both the emitter and

collector, and V is the first ionization energy. Conservation
fi

of electron energy is

-(21)

this can be reduced to

% i va V(22)

where Ji= Jion/JE" In the ignited mode i is generally about 2 (

TE = 1500 K and T = 3000 K ), consequently the arc-drop, Vd, is

negative. In other words the high plasma electron temperature is

generated by resistance heating.

Finally, we consider electron and ion momentum. From electron

momentum conservation, we find the potential drop in the plasma

region. By adding the electron and ion momentum equations as in

the general case, we find our diffusion equation and boundary

conditions to which the sheaths contribute flux terms. When we

introduce the ionization source term into this, we have the

complete formulation. Electron momentum conservation is

0 (23)

where Xe is electron mean free path. Using pe = nkTe and J =

qnue, we can rearrange eq.23 into

3 = & (k7- .n1&fl (24)

S_....... ..... ..... .. ......... ..
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .- '"'" ° "'" " ' '" .'' ,.-'°" "'' . '=,'%.' ° ,""" ° %""° " . % ." N"" , "", " .
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This can be further reduced by dividing by JE and using =x/d

* where d is the convertor gap thickness: "

* Integration of this equation from the emitter sheath interface to

the collector sheath interface yields

ril o ?j (26)

where

d _ FTn (27)k T

The quanity R is the normalized plasma resistance.

The ion and electron momentum equations can be written

d(28)

0 k7. 7 - _o;__
I" dx a.

where X% is ion mean free path and a is ion thermal speed,

Addition of eqs.28 yields

f.d×fI~i - t. (29)

which is ambipolar diffusion. Equation 29 is differentiated to

become

T A (30)
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At this point we assume recombination is negligible and the

ionization source term is

dA dnX (31)

Using eqs.31 in eq.30 yields

d'n ( Ld (32)

Equation 29 taken at the boundaries of the plasma ( at the

emitter and collector sheath interfaces ) forms the plasma

boundary conditions

-A, 16. (33)

where

(34)

Equation 32 is written as

d2n + A n&) (35)

where

') = 4 (- ; i(36)
iA;

where A(r) is the ionization coefficient and is found from

consideration of ionization kinetics. Its solution for n is

•". -- , (37) c)

.i~i. ," ." .. ..-..- ,- ...-....- ,... ... ...... . ...... . . . . . . . . ....... ... -.,.-......". ...... . .. . .-. ., .- -
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O where B and C are constants of integration and A=A(T). The -

quantities a and 01, which are the boundary conditions for

eq.37, can be written as functions of T, XE, xc and AXs, ,..

S(38)

When there is no reflection, B0 and B1 are both large, i.e.,

0 1

Significant reflection on the emitter side reduces B and it may
( 0

indeed attain negative values for sufficiently strong reflection.

The density equation (eq. 35) with the boundary conditions B0

*g and B1 is a linear eigenvalue problem; its solution yields A and -

C as functions of 0 and Bi" The calculated results are shown in

fig. 2.2.2. Since A(,) is function of r from the ionization

* kinetics, the value of T is thus determined by a function of 0"

and VI. The plasma resistance, R, also can be expessed in terms

of functions of 0 0 and B1 through A and C using eq.27:

Rin I,,, d Aro __ (39)

(4w.n(c)

Using the sheath results which provide j, Q, B0 and B1, the

isothermal formulation is complete. The results are summarized

below. The quantities 0 010 Q and j are found from the sheath

calculations as functions of i, XE, XC, and Axs, i.e.,

-"j -Q ('r', x ~,)

,-~~~~~~~~~~.....-.....-.:.-.-...... ..-... ,.i:... ..-.... ......... . . . . . . . . . . . . .

-". .... .. . .. . . . .. ., . . .. . . . . . _- 5 ..,'. :'-.- ."."l" --,-'-.'- i"".x ... .."L" .' ':. ' '2"A O:''.'-
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&.0

* 2.5

lot 20,30

-1 4 9 14 29 24

Figure 2.2.2 The Eigenvalue Problem

From the eigenvalue problem for the plasma density we then find

ACAr = (p.,~) (40)

From the continuity equation for current we find

TI1 Si(A ,r)1L-t-rIn(--1 (41)

And from the electron momentum equation we find

107 (AC ))-g.2ri (42)

These three previous equations determine xE x~ and i when Ax6 is

Et .
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given. This set of equations is valid for all Ax Even in the

case of Ax <= 0 when there is no reflection, the calculations
s

differ from previous isothermal calculations because the

Boltzmann assumption on the electrons is not used as indicated by

* the presence of a0 and a1

0 "
(.rLI

• -S

S!

C- ,

-( --
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* D.

CHAPTER 3: SHEATHS

3.1 Assumptions

3.2 General Solution Condition

3.3 Equations

3.4 Sheath Solutions

In this chapter the collisionless sheath formulation is

developed. The sheath formulation and its results are essential

to thermionic convertor formulation because two pieces of

information are required from ;he sheath:

I) the potential change through the sheath, and

2) plasma density boundary conditions, and in the

non-isothermal case, electron temperature

boundary conditions.

Both of these have significant effects on predicted thermicric

convertor performance, and therefore sheath formulation is of

great interest. In addition to calculating more accurate she.ath

results than in previous sheath formulations, we examine three

expected emitter sheath phenomena:

(L ..............

- .. .
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1) plasma ions reflected by the emitter sheath,

2) ions trapped in the double emitter sheath, and

3) surface emission ions from the emitter surface.

These three phenomena and more accurate results require

generalizations to previous formulations along two lines. First,

the assumption of cold ions ( monoenergetic plasma ions ) canlrct

be retained since ion reflection begins with the lowest energy

plasma ions and reflects only the part of the ion distribution

that has energies lower than the potential rise through the

sheath. Second, previous formulations have idealized electron

C dynamics in the sheath under the assumption of a large sheath

height. In fact the actual sheath heights are of order unity,

and therefore this is a poor assumption. Complete calculation of

the electron dynamics converts the simple algebraic equations of

the large sheath height formulation to equations containing

integrals over distribution functions that must be integrated

numerically. By contrast, the finite temperature ion

distribution causes theoretical difficulties which must be

carefully considered. The cold ion formulation uses the Bohm

criterion on ion kinetic energy to assure a self-consistant

sheath solution. We show that a finite temperature plasma ion

distribution must have its low energy tail cut off before it

enters the collisionless sheath since otherwise no self-

consistant sheath solution exists. We expect a transitional

region to exist between the collisionless sheath and the neutral

plasma since we are asymptotically matching the two. This region

would be collisional but with relatively strong electric i:eld

. .ii
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that would accelerate and depopulate the ion distribution of low

velocity members. Therefore we cut off the low energy tail of

the ion distribution. We show that the minimum ion distribution

shift speed depends logarithimically on an arbitrarily chosen

cut-off of low energy ions, thus we can therefore pick an order-

of-magnitude cut-off with little effect on the physical outcome.

In both the cold ion and finite temperature ion cases, self-

consistantcy is critical at the plasma-sheath interface, and we

develop a generalized self-consistancy condition which includes

the original Bohm criterion as a special case.

When trapped ions and surface emission ions are considered, S

the point of critical self-consistancy moves away from the

plasma-sheath interface into the sheath. The new generalized

self-consistancy condition remains valid for this case. The .

amount cf surface emission ions present in the sheath is

determined by the Saha-Langmuir equation and thus by the

temperature and work function of the electrode along with :he p

neutral pressure next to the electrode. On the other hand, the

amcunt of trapped ions is determined by the coll-sional processes

C largely charge exchange ) in the sheath. The amount of trapped

ions cannot be easily calculated because of the complexity of the

collisio:ial processes. Threrefore, we estimate the amount of

trapped ions and produce results for a range of values. %

3.1 Assumptions

* .. .' -..
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In this section we list and discuss the assumptions of the

present sheath formulation and their justifications. The present

formulation, which removes some previous idealizations, assumes:

1) the sheath is collisionless,

2) the electron distributions from the emitter and collector

are Maxwellian with the emitter and collector

temperatures respectively,

3) the plasma electrons are Maxwellian with the plasma
S

electron temperature,

4) the ion distribution from the plasma has the neutral

temperature, and is a shifted Mlaxwellian

distribution,

5) at the plasma-sheath interface, charge neutrality exists,

6) at the plasma-sheath interface, the electric field is

small C in the match-asymptotic sense ),

7) the trapped ions have a Maxwellian distribution with the

emitter temperature and an arbitrarily specified density,

and

8) the surface emission ions are emitted with a Maxwellian

distribution governed by the Saha-Langmuir equation.

In contrast, most previous formulations have assumed:

1) the ion distribution is cold,

2) the plasma electron density in the sheath is Boltzmann

with potential, and

3) the emitter electron distribution is also cold.

These three assumptions simplified the mathematics considerably,
be
but produce relatively large errors in the sheath resul.ts,...

......... .
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particularly for small sheath heights. Since the emitter sheath

effects of interest here, namely reflection, trapped ions, and

surface emission ions, produce smaller sheath heights, it is

essential to remove these assumptions. Additionally, the cold

ion assumption is totally incompatible with ion reflection.

We can formulate the sheath using the Poisson equation in one

dimension,

*--... (7( -fesi) (1)

where 0 is potential, x is distance into the sheath, q is unit

charge, ni(0) is ion density, and ne () is electron density. The

quantities n.(0) and n (0) are only functions of * by virtue of
1 e

the collisionless assumption. In non-dimensional form, eq.l

becomes p

/ (2) i;. .

where x (q¢)/(kTE) , x = x/XD, and where

21: (3)

which is the Debye length. The quantity no is the plasma density

at the plasma-sheath interface. The function F(x) is

flo

The collisionless assumption is used because the Debye length in

the thermionic convertor is always at least an order of magnitude

smaller than the mean free paths. In principle, a transitional

layer must exist to buffer between the collisionless sheath and

.......................
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the continuum plasma. This layer would also accelerate low

energy ions and therefore cut off the bottom of the ion

distribution. The cut-off is arbitrarily determined, but has a

weak logarithimic effect on the sheath results C it raises ion

distribution shift speed).

Assumptions 2 and 8 regarding the surface emission of

electrons and ions are expected to be very good because the

surface temperatures are high. The emitted distributions should S.

be indistinguishable from Maxwellian distributions. The other

assumptions regarding distributions, 3,4 and 7 are more tenuous.

The ion distribution is assumed to have the neutral temperature S

because there is large charge-exchange collision cross-section

between the ions and the neutrals. The shift in the ion

distribution ( assumption 4 ) is to be determined as the minimum .

shift required to construct a self-consistant sheath. The

assumption that the trapped ions are at the neutral temperature

* is also based on the predominance of charge exchange collisions.

The assumption that the plasma electrons are in a Maxwellian

distribution with their own temperature is based on the length cf

C the convertor plasma region ( approx. 15 mean free paths ). The

convertor is long enough that the electrons have time to

equilibrate with each othe: but not long enough to equibrate with

the ions.

1See, for instance, M1ontgomery, p.33.

........................................
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3.2 The General Solution Condition

Before proceeding on to discuss the possible sheath 0

configurations and their specific equations, we develop the

general solution condition which applies to all collisionless

0 sheaths to preclude consideration of non-self-consistant

solutions. Asymptotically matching the collisionless sheath to

the quasi-neutral plasma always requires some condition on the

• ion distribution function coming into the sheath from the plasma. S

In the past this had been the Bohm criterion which assumed cold

plasma ions and required the monoenergetic plasma ion

distribution to be shifted up in velocity to

where T is plasma electron temperature, k is Boltzmann's* e

constant and M: ion mass. In this section it will be shown that a

general condition for solving the collisionless sheath with a

neutral plasma-sheath interface exists and that the bohm

critericn and other local ( at the plasma-sheath interface )

matching conditions are special cases of the general condition.

We show that local matching is a necessary but not sufficient

condition on the sheath solution. In the absence of trapped ions

or surface emission ions, as is the case with most past

calculations, local matching proves to be also sufficient.

Further, we show, in the case of no trapped ions or surface

emission ions, that for finite temperature the ion distribution

must have no zero velocity ions when it enters the collisionless

sheath.

4 I "
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A self-consistant sheath solution is found by integrating the

nondimensional poisson equation from the last section,

d 12

The specific forms of F(x) are developed in the next section but

we need not know them until we wish to evaluate specific cases.

By convention X = 0 at the plasma-sheath interface and increasing

X repels electrons. To construct a non-trivial solution 2 we

3)

Transforming eq.3 into eq.4 implicitly assumes is monconic

on the domain (ti, 2 ). Since at the plasma-sheath interface, we

assume charge neutrality and zero electric field, we have F(C)=

0 and dx/d& 0 . Therefore we can write,

j (12)d

( -

ft

and,". ]

aSince F(0= 0 by charge neurality, there is alway he rivial

ston dxd 0.Thrfrwecnrie

((

. .x
.°l ,, -o -, 4 .o °Go- ,- .,, o - I,°o o~o °,l °. , q~bl . . .e . *" • - % . % -. .. . , ° ° . • . -. -
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Equation 6 is the method for constructing non-trivial solutions.

From eq.6 and our previous observation about converting eq.3 into

eq.4 we can see that that inequality,

o X- XM (7)%

must hold where Xm is the first maximum or minimum X reaches in

the sheath since otherwise x(&) is not monotonic. If we attempt

to co.s:rict a scit.ior. i.hh does not meet this condition, then

eq 6 causes x,, t dc, l  bkk before reaching its full sheath

heig.:.

Sno~r bt-> ;r ' , through 3.2.4(d) are the

.. 
.": " . " - s ar their solu::cn

Scc:,'.::- fT-* -p *-. i' ar-anged in the order that we .

expe: t ":.tei '~, .- ° ,Ier ty through the convertcr

is reduced and _f :a .2 f -:er Richardson current density to

net r: . V e. e Fror. the general solun:is"

ccnditiD . e up a:.n aer.ve necess.-ry local ( at the plasma-

sheath in:erface ) matching conditions, of which generalized Bohm

criterion is a special case. We can expand F(x) around x=O as

since F(tx) may be represented asymptotically in this form for

cases we intend to develop. Then eq.8 may be integrated,

X

CI 44.

....... .. .. .. ... .. '.'
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•e 0

xx

Figure 3.2.1(a) Single Electron Repelling Sheath

C ° E

Figure 3.2.1(b) Double Non Ion Reflecting Sheath

Tp

Figure 3.2.1(c) Double Ion Reflecting Sheath

Al~J /(e)x -o o<_x tX.

Figure 3.2.1(d) Single Ion Repelling Sheath

I!

The asymptopic order of the terms in this equation is a~ b ab
12 2 3

a3 '', To insure that at least local matching is satisfied, the
fp
first non-zero term must be positive. We call this the .'

t
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generalized Bohm criterion. The usual Bohm criterion assumes

F(X) is expandable as,

FXX4 (1c)

in which case the criterion is

9 41=)

When only cold ions are considered, the Bohm criterion (eq.11) is

sufficient, but when finite temperature ions are considered, we

must apply the generalized Bohm criterion. If trapped or surface

emission ions are present, we find that local matching is not

sufficient and that the full solution condition must be applied.

3.3 Equations -

In this section we develop the sheath equations for the

collisionless emitter sheath configurations shown in fig. 3.2.1

and for the collisionless collector sheath. In order to make the

derivations as clear as possible, we divide this section into

subsections for each of the cases listed previously and then

t follow a standard format in presenting the equations. We divide

each subsection into the following order of presentation:

1. Sheath Configuration

2. F.(x) and F (x)
e

3. Integrals of Fi(X) and F Mx)
1 e

4. Equations: F.(0) = 1,
1

F e (0) = 1,

•(..:

............................................................. .. :.
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min[ 0 <= x <= xE ]
0 O

0 0

5. Useful Resultant Quantities

We begin each subsection with the sheath configuration and

* appropriate definitions, and then derive the functions Fi(x) and

F Ce(X) accordingly. These functions are respectively the tctal

ion and total electron densities as functions of sheath

potential. The the third part of each subsection, we find the

integrals of F.(x) and F (X). The fourth part presents the~e
equations which are solved simultaneously for the sheath. The

equations FiCx) = 1 and Fe() 1 represent charge neutrality at

the plasma-sheath interface: the charge densities there are both

set eaual to 1 because they are nondimensionalized by total

* plasma density, n., at the plasma-sheath interface. The third

equation is the general solution condition, and the fourth

equation is a candition which applies only in the case of a

* double sheath; it means that d¢/dx = 0 at the sheath peak. This
p

can be seer. from eq. 3.2.5. These four equations are used to

solve for the four variables:

N. density of ions moving toward the emitter

at the plasma-sheath interface,

(N density of electrons crossing the motive
E

peak C if any ) coming from the emitter,

N0  = density of electrons moving toward the emitter
0

at the plasma-sheath interface, and

u = shift in the ion velocity distributicn coming
S([%'-

-I .%

.......... ,_i ¢,Z i_ -< Z "" . . ." . . """ , , .".".", ' '","-". ,.... .. '.,...''''''''% '. "% . . .
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from the plasma at the plasma-sheath interface.

* The first three of these variables, denoted by capital N's are

nondimensionalized by plasma density at the plasma-sheath

interface, nO. In the cases where no motive peak exists, the

fourth equation does not apply since NE is known. In general

these equations must be solved numerically, and the numerical

methods employed are straight forward. Therefore, no discussion

of the methods is presented. Finally, in the fifth part of each

subsection, we present the useful quantities that the sheath

results produce.

C

a. single electron repelling sheath

1. Configuration

*

In this sheath, which occurs at high current densities, the

Richardson emitted density, NR, is equal to the emitted density,

N because no motive peak exists.

(V

2. Fi(x) and F (x)

The ion density is

-7

. . . . . . . o , . . . . . . . ° • • °' - .° ° . .. ° . "° °'.

(""' . ' -. ''''''' , -. '* ,.." ' -- " ". '" ".-- " . -.-. " ." ".". * - ' -".-°- ." - ." . .". .' .".".••• .'.".".". . . .



-14- CHAPTER 3

0

where us is the ion distribution shift speed and u cut is the cut- 6

off of low energy ions. Both u5 and Ucut are nondimensionalized

by

, where U is velocity. The electron density is

4 2

rII

where =N and both are the nondimensional emitted e2ectron~E 'R

density at the plasma-sheath interface. The quantity T is the

nondimensional plasma electron temperature given by the ratio[I

Te!T The first term in F e(X) represents the decreasing density

contribution of emitted electrons as they accelerate down the

sheath. The second term rep.-esents the density contributioz of
(|

the plasma electrons which are decelerated as they climb -he

sheath.

3. Integrals of F.(x) and Fe (x)
ate

';::: %-~~~~~~.:. .2...'.-.?. .. i'-.-......'..... "... . . . . . . . . . . .
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These are just the integrals of eqs. 1 and 2. The integral of

F.( ) is 1 -

Frx)dX V -"-)d . ,"::
' 1 )4du.

And, the integral of Fe(c) is

x /r #-h e(4~v~)dL.

-[ (1 *or 2- 6. -U (u. -,a

fef"72u rwt~

4. Equations

Charge neutrality for the ions, F.(O) = 1, is immedia-.ely

satified by eqs. 1 because no ions are reflected and therefore

N. = 1. Charge neutrality for the electrons is
1

To complete the formulation. we apply local matching ( the Bohm-

criterion ) at the plasma-sheath interface. This can be done

because 1) the fourth equation does not apply since there is no

I _
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motive peak in this sheath, and 2) local matching satisfies the

general solution condition is this case. Local matching is

sufficient because no trapped ions exist and we have assumed that

there is no surface emission of ions in this case. The

justification for assuming no surface emission and carrying out

local matching in this case is that when this sheath occurs

surface emission is entirely negligible. 3 Also, this case,

because of simplicity, is used to explain the need for a cutoff

of low energy ions in local Bohm matching. Local matching is

done by asymptotically expanding F(X) = F(x) - Fe (x) at x = 0.

The lowest order terms are:

" X/14 (6)

The X1/ 2 term in this expansion comes entirely from the low

energy ions entering the sheath. It represents the acceleration

of zero velocity ions of finite velocity. Since local matching

requires the lowest order term to be greater than or equal to

zero ( eq. 3.2.10 ), the cutoff of low energy ions, ucut must be

greater than zero. Otherwise, no self-consistant sheath solution

can be constructed. We choose an arbitrary cut-off of

Ucut (.l)U

Uon is defined at the beginning of section 3.2 ) for two

reasons: firs:, the effect of the cut-off on u, the ion

' At the high current densities ccrresponding to this sheath,
-6surface emission ion density is 10 of total ion density.

....... •. •o . . ............ .,,.. -. %.. .......... .*. .......... . . .... °.... .%% . % ... .. ..
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distribution shift, is logarithmically weak ( see fig. 3.4.3 ),

and second, we expect an intermediate asymptotic region to exist 0

between the collisionless sheath and the neutral plasma that

would accelerate the ion distribution and depopulate it of low

energy ions.

With this cutoff established, the expansion of F(X) is then:

®F (X - IL o r ... .,L', -

eY-q%- ~ u' :

wereathen ter n racten s ..'xan hegeerlze--

* .*[ . .

crtro is

are solved numerically for us and NO  when NE T , and xE are 2'i1[

given. w

5. Useful Resultant Quantities.-',. L T' -TL-T'

5...1
* J Cu~U ~ ~~at

"- .-"""""" -""";" , e "-".". , ."."- ,".' "v .,. '' "-< '- -' -", - ."-"•" ."•"- - ...• . ..
"i" -'./ -"." -' - ,--. ' -. ''. '.",'. '.-, ',- ,-,-,- ", ',-' -. "'- ''-.', . ."". '2- "'. '.,'-'-' . ','.. '.. .'" -" -' " "
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The sheath solution provides the following functions to the

* rest of the therniionic convertor formulation:

10 ) 10

q.=cv.(4,
The first quantity, ~,is the net ion loss rate

* L

The second quantity, jis normalized current

(12

where J is net current density

and J is emritted current density
E

and where a and a are the thermal speedse E

4e/

The third quantity is electron Mach number

And, the fourth quantity, cot is the ratio of electron density at
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the plasma-sheath interface moving toward the emitter to the

total electron density there,

LY 0 (16)

b. and c. double sheath

1. Configuration

jC

( Ax may be larger or smaller than XE)
I

We develop cases b and c together because the differences are

minimal. In this case the emitted density, NR, is no longer the

same as the emitted density crossing the motive peak, NE, beca-se

the back sheath height, AX, repels some of the emitted electrons.

2. Fi(x) and Fe(x)

First, we consider F (x). This is the most complicated cf the

two because we take into account three classes of ions: plasma

icns C ions coming onto the sheath from the plasma ), trapped

ions, and surface emission ions. The surface emission ion

density is known from the Saha-Langmuir equation and the pl-sma

ion density is found in the usual way by setting F.(0) = .

However, the trapped ion density is not determined by anything in

: -. , -. o° -. - . • -. . • °. • . °. . . , .. - ° . .• .% " . . . . . . ° •.°% , • °, % . . % °. -. °° . •% . • % • ., • ° .. , •- .
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the collisionless sheath theory; it is determined by the small

* number of collisions that do occur in the sheath. It is not -

known how to calculate the amount of trapped ions precisely, but

clearly it should be less than the local equilibrium ( "fully

* trapped" ) plasma density. The major source of trapped ions is

expected to be plasma ions passing through the sheath having

charge exchange collisions with neutrals.

6 To simplify the equations for F.(x), we use a convention of I

comparing trapped and surface emission ion density to the plasma

ion density as illustrated in fig. 3.3.1. Figure 3.3.1 shows the

distribution of ion velocity at the sheath motive peak. The S

trapped ion region is limited by the lesser of Ax or XE by

definition; an ion is not trapped if it has an energy greater

0 than this. Trapped and surface emission ion densities are .

denoted by f and fsur" When ftr 1 and f = 1, the dotted
tr sur u

curve representing a thermal equilibrium distribution ( based on ...

the density of plasma ions ) is filled by the trapped and surface .

emission ions.

Fi(X) is then

where

X (2)

( Al

- .
"r-
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AX 5X

oAPE

1AX k/

Figure 3.3.1 Trapped and Surface Emission Ions

at the Sheath Motive Peak

(r X, f ;t x r

-- PAM-ad udu, d3
If 4 I + +

Mee
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In these equations two conventions have been used to simplify the

notation: p

1) if a square root has a negative argument, then it is zero

2) if an integral's upper limit is less than the lower

limit, then the integral is zero. p

This convention is followed for all integrals over distribution

functions. As before the densities *are nondimensionalized by

total plasma density at the plasma-sheath interface. Finally the

parameter f is related to nondimensional emitted density by
sur

f = 2e E F
sur surface. (5)

Electron density, FeCx), is
e

re{)= Ne 4 + JeI-' J
. -.-

r (6)

NE

The first term in this equation is the density of plasma

electrons in the sheath. The second term is the densitv of

emitted electrons in the sheath.

3. Integrals of F.(x) and F (X)

For the Ions,

(L

.. ~........... ...... ,.... ..... .. °.
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Kx

jF(~h (x)SX

* where

x
f e7 a (u(tx"-dxd

+ f -- Uj 8)

2.f~ f

~ (9)

A7r ZE. X
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'CC

For~or theelctrns
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* (11) 3

aUJ

4. Equations

First, we have F O) 1 from eqs. 1,2,3 and 4,

. .. ",..

"41

A term for trapped ions does not appear in this equation because

...................................................
* .. * * .. -... . . .. . .
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trapped ions, by definition, do not exist at the plasma-sheath

*interface. And, we have F e(0) =1 from eq. 6,

All

* S0

0 (15)

ar*tagh owr aplcton oftei egas fF(x ad
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F e(X). We will not write out the details of these equations

since they cannot be solved analytically. The numerical solution

of these is simple in principle: we have to solve four

simultaneous equations in four variables, No , NE, fplasma and u

where fsur' fr' XEs AX, Ucut and t are given. And, the four S

equation can be reduced to two by using eqs. 12 and 13 in 14 and

15 to eliminate fplasma and N 0 However, the actual solution

for each case requires approximately 15 sec of CPU time on an IBM

370-3081.

5. Useful Resultant Quantities

The results of this sheath are presented in the same way as in

3.3(a)5 except that NE is a dependent variable and the results

now depend on f f and Ax:
r sur

o. single ion repelling sheath . i

AX 7. .A
ingle. .Conf ion r sheath. .

1.~~ Conigraio

rN~x.
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In this case, we have reversed the sense of X for convenience.

2. F.(x) and F e(X)
17

The ion density, Fi M, is

Je~~4)'u~'..-US

____ +4; eX

We have contracted this expression for ion density to eliminate

N, by using F.CO) = 1 immediately. For this sheath

configuration, there cannot be trapped ions.

* The electron density, F ex) is

where

F // (3)

and

NEANX (4)

Ai NA ..
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3. Integrals of F.(X) and F e(x)

A' e

"d 

-

• . bO:: ' 4

+

I~~~~ ---------- . J " " --
((5)

nhe 

c

4. Equati.on-

. . . .. . .. t - . i . .-n.

a.-i.. . . . . . . . . . . .

• . ° 
.-; 1
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produce an analytical result. We find, analytically, that the

minimum for us  is always less than zero for small Ax under I

certain easily satisfied conditions. Regardless of AX, numerical

calculation always supports us = 0.

=To demonstrate that u 0 for small AX we assume f = 0 forTodmntaeta s sur

simplicity " and take the asymptotic expansion of the integrals

for u 0,

C' S

F"1- 3 (7)

31a.[

The general solution condition then requires

34 (8)--------- ---------

SIn the cases that this sheath occurs, f~u is always small

-6-

sur10 - ) and does not affect the numerical conclusion that u -0..-i-
s " '-.

L -:.
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We now show that for J >= 0 ( positive net current density ) eq.

- 8 is satified:
I

=n. (9)

Then J >= 0 implies

(10)

Therefore eq. 8 is satisfied for J >= 0 and u = 0 is a self-

consistant solution.

5. Useful Resultant Quantities

The resultant quantities of this sheath must be presented to

the rest the thermionic convertor formulation differently because

there is no sheath height, XE. In fact from eqs. 3 and 9 (

charge neutrality and net current ) we can immediately derive

' . ~(11) . :a

The definitions of j and Q are as in 3.3(a) resultant quantities.

Because of this, we present these sheath results in this case as

Q=Q(j, )

us  0, (12)

. . . . . . . . . . . .

........ . . . . . . . . . . .. . . . ...... ' ". .... ,S "m
' '
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e. collector sheath

1. Configuration

II

Since the collector is assumed to emit nothing, this case is

particularly simple. As in all other cases, the electron

distribution function is assumed to have no shift. However, as

will be seen in section 4.2 the collector sheath height is

usually small and goes to zero with ion reflection at the

emitter. Because of this it may be of interest in further work
t

to allow the electron distribution to have a shift and to

simultaneously allow an ion repelling collector sheath.

s 2. Fi(X) and Fe(X)

The ion density, F.(X), is
aL

#aa

and the electron density, F (X), is
e

Y-AI'

Fe () e I# (2)

p.rr--f4 (2)

..
f; ° .; ..: -.... . ....... : .'. ...; ., .. . . ... . .. .. .- .- ....-. .... .- . .- .. , ..-
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3. Integrals of F.(X) and F (x
1 e

In this case we do not list the integrals since local matching

always suffices Cbecause no trapped or surface emission ions

exist )

4. Equations

To carry out local matching, we expand F(x) and apply FCx) >=

0. F.C X) expanded is

(3

And, F (X) expanded is
e

eX0 jF (4)

0 Therefore, the local matching condition is

?'1rX~ S(5)

This the classical Bohm criterion.

5. Useful Resultant Quantities

. ... .. . . . .. .. . ........ .. .. .. . .... . . . . .. .
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The results of this sheath are presented as:

a7

(x~r-)(6)

where a1 is the fraction of electrons at the plasma-collector

sheath interface moving toward the collector,

* I

3.4 Sheath Solutions

Again, we divide this section into subsections for each type

of sheath. Most of the results in this section are on the double

" Qemitter sheath because its is the most complex case and contains

the emitter sheath phenomena of interest - trapped ions and

surface emission ions.

a. single electron repelling sheath

This sheath occurs at the emitter when the net current

density, J, is greater than appoximately 75% of JR' We do not

present results for this case because they are expected to be

similar to conventional theories.

b. and c. double sheath

. ... .. ... ..... - o o .°o - . °. . . . . -. - -. .. . . . .. - . m
.

. .. . . ," - ° •.~~. . . . .. . . .. . . . .. .. ;. .. . ... .. . . . .. :. . . .. .. . ''-_. . " "" "
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This subsection on the double emitter sheath contains most of

6 the results of interest. In this subsection, we first

distinguish the results of the present full collisionless sheath

theory from past approximate theories but still assuming no

* trapped or emitted ions. We then demonstrate the effect of -'-

trapped ions on the sheath. We make no mention of surface

emission ions in this subsection because of their small amount

and small effect in the convertor at the current densities we

make calculations for. However, surface emission is fully

included in all sheath results used in the thermionic convertor

calculations.

The essential diferences in results of the present full

collisionless theory and past approximate theories is illustrated

0 in figs. 3.4.1, 3.4.2 and 3.4.3. Figure 3.4.1 demonstrates the

relationship between sheath height, XE, and normalized current,

j. The first curve ( to the right ) is the simplest approximate,

0• assuming that 1) the emitted electrons are monoenergetic at their

average speed, 2) the plasma electrons are in a fully Boltzmann

distribution despite a finite sheath height, and 3) the plasma

ions are monoenergetic. The second curve removes the Boltzmann

7. plasma electron assumption. The third curve removes the cold

emitter electron assumption. And, the fourth curve removes the

final assumption of cold plasma ions. The first two changes are

unequivocal corrections to the sheath theory. However, the last

correction, removal of the cold ion approximation requires the

imposition of the cut-off of low energy ions. The cut-off, as

discussed previously, is set at 10% of the monoenergetic Bohm

.

. . . . . . . . . ..*..*- .* . . . . . . . . . . . . .
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00

&

r"i

cb.oo 2100 3.0 D00 ....

Figure 3.4.1 Net Current and Sheath Approximations

speed. Figure 3.4.2 shows the effect of these approximations on

the ion distribution shift speed, u . It should be noted that u

C--

S s

compares closely with the monoenergetic Bohm speed until the cold

ion approximation is removed. Figure 3.4.3 shows the effect of

the cut-off on shift speed, us$ in the full sheath theory case.

The weak variation of u s is the justification for an arbitrary

ut We have made no mention of the back sheath height, AX,

cut

because its effect on the results is very small. However, this

is not the case when surface emission ions or trapped ions are

included.

I

speed................................................................................
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j. D

.~cit ;M1i------

.L_

/3

I c 2.CXE

Figure 3.4.2 Shift Speed and Sheath Approximations

Trapped ions have a substantial effect on the sheath solution.

Figure 3.4.4 shows the general solution condition for a double

sheath with xE and for ft 0.0 and for f~ 0.2. In the no

trapped ion case ( f =r 0.0 ) we have local matching in which

the critical point occours at the plasma sheath interface CX =0

)As trapped ions are added, the critical point moves into the

sheath f 0.2 ).Figure 3.4.5 shows the sheath potential

versus nondimensional position, x ,/X. The two cases shown

are for f tr = 0.0 and f tr = 0.2 corresponding to fig. 3.4.4. In

the no trapped ion case the potential drops rapidly from its peak
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7a2.

I. . ,

r~

Figure 3.4.3 Effect of Cut-Off on Shift Speed

at XE 2.0 to )(E 0.0. In the f 0.2 trapped case the
E tr

sheath drops rapidly to the critical matching point, where i:t

C levels out asymptotically and then continues its drop to x = C.0.

This asymptotic region has a firnite slope in fig. 3.4.5 because a

numerical factor has been added for display purposes. The

existence of this asymptotic "flat ' pot" is not troublescme

because a slight increase in u swill remove it. Figure 3.4.6

shows the trapped ion effect on u5 for various 'XE Orly a

(certain amount of trapped ions can be added before no she-nth

solution exists. Trapped ions added for a given sheath heigl.:,

(:

..........................S.. ..
_ * . . .' ,.... . .



-39- CHAPTER 3

CX

US

* IV

Fiur 344 oltinCodiin it Tape In

tr' E

Figure t e tot .4 Souiti of Conpdions itha Trappesons t

plasmaf elcrsns expTetsoluto ails whenute require shw ise

tr E

effect of trapped ions on nondimensional current density, j. The

(essential feature here is that trapped ions reduce XE for a -1ven

j.E
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LO

=

I- . .O 10 UO 12 .L ,• ] .P

Figure 3.4.5 Sheath Structure with Trapped Ions".".

:: The sheath results on trapped ions so far have assumed Axs >=

*s

"[ 0 (a reflecti've double sheath ), in which case the effects of ----

- Axs  on all but the amount of ions reflected ) are

isgiiat HoeeweLx< 0 the amount of trapped ions '-"'"

0s

is con _rolled by the back sheath height, Ax, but the matching is [-i"

controlled by local matching at the plasma-sheath interf-a.!e.

"Fi-ure 3.4.8 shows this effect on u for xr = 0.5. W'hen AX= [-'i

-0.5, back sheat.h height is zero. In this case the shift speed, .--.

{ u =1.95, is the expected result corresponding to the no trapped

0

. ~~ion case. However, as the back sheath height, L%, increases from ....

o0 %=

0 ,

C[.[

C

* - - -

°o , %", , ,° ". ° % The ° sheath° % o , ", ° " " "% °" "% ". reut ntape"oss a hav assumed Ax• 5' . > ,.,-•",..' "°oo.,
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Figure 3.4.6 Shift Speed with Trapped ions

zero the matching remains local while trapped ions accumulate in

sheath peak. This causes u to rise and also causes j to rise (

- fig. 3.4.9 ). For display purposes u5 has been limited to 3 by

the numerical routine. As can be seen u5 increases exponent.ially

with Ax until Ax = XE where trapped ions begin to control

matching. For the purpose of clarity, u is shown to have aS - .

finite slope at Ax = XE when in fact the slope is infinite.

After AX = XE is passed u drops to its value shown in fig.

3.4.6.

e,' .
•-. . . . . . . . . "... - -'
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*0z

Figure 3.4.7 Nondimensional. Current Density with Trapped Ions

dsingle ion repelling sheath

The results in this case are very simple:

us 0*
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0 0

00.0

=0.5 S

Figure 3.4.8 Effect of Back Sheath Height on Shift Speed

e. collector sheath

This is the classical Bohm matching case. Figure 3.4.10 shows

the collector shift speed, us, versus collector sheath height, -

xC . The curves shown are for various ion distribution cut-offs, "

Ucut = .1, .01, .001, .0001. The notable feature here is thzz u

drops to negative infinity at a finite but small XC. This is

expected because a small sheath should not have a pre-sheath _

region capable of accelerating ions to a high speed.

(- .o .
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CHAPTER 4: ISOTHERMAL SOLUTIONS

4.1 Effects of Ion Reflection 0

4.2 Effects of Trapped Ions

4.3 Effects of Surface Emision

4.4 Comparison with Experimental Work •

* p•

In this chapter we develop and discuss isothermal solutions

for the thermionic convertor with the emitter sheath phenomena of

ion reflection, trapped ions and surface emission ions included.

All three of these phenomena increase in significance as net

current density through the convertor is reduced. Each of the

these reduces the net ion loss rate to the emitter and

consequently increases arc-drop ( therefore degrading performance

at low current densities ). This increase in arc-drop is in

agreement with the same tendency in the experimen-al resu2ts. p
However, the experimental results also show a plateau ( of low

arc-drop ) at low current density. This plateau occurs at a

current density corresponding to significant surface ion emission

and is therefore thought to occur as surface emission repF.azes

.~~~t

o 

.' . . . ..-.................. ................ ....... •....-.-.- ..-.....-.-......-......-. ...... . . .. <..-.. .
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volume ionization as the dominant source of plasma ions.

* Unfortunately, the theoretical calculations cannot be carried

into this region because the collisionless collector sheath

matching ( to the neutral plasma ) fails.

0 To provide a realistic framework for presenting the results of

this chapter, we consider the convertor conditions shown as case

CASE 1 CASE 2

TE = 1500 K T = 1750 K
£ E

Tc  750 K TC  750 K

p cs 1 torr Pcs 1 tort

d 10 mil d= 0 ril

2.12 eV E 2.67 eV

•C = 1.60 eV 0C 1.73 eV P

j 20 amp/cm2  J 7.57 amp/cm2

• Jcs+ 1.80 x 10 amp/cm2  Jcs+ 2.10 x 10 amp/cm2

Figure 4.1 Isothermal Solution Conditions

1 in fig. 4.1. Case 2 is shown because it has the largest

surface emission of any typical thermionic convertor operazing

condition ( because the work function is high and the tempera;2re

is also high ). Instead of presenting case 2 seperately, we

demonstrate the effects of surface emission in case 1 by

increasing the surface emission by a factor of 100 thereby

bringing it up to the level in case 2. The net current dce:.'-ty

at which surface emission becomes significant can be estimated by

multiplying J by the square root of the ion to electron mass

.. . . . . .



( S

-3- CHAPTER 4

ratio ( approximately 500 ). In case 1 this means that surface

emission becomes significant at J = .01 amps/cm 2 while in case 2

2
significant surface emission begins at J = 1.0 amps/cm

4.1 Effects of Ion Reflection

In this section we develop the isothermal results for case 1

0 with ion reflection, but without trapped ions and with the small S
amount of surface emission ions of case 1. Figure 4.1.1 is the

C-V diagram for this case. The dotted line extending upward from

( point A is the single electron repelling emitter sheath solution.

However, we have nor taken recombination into account in this

isothermal calculation nor have we included the Schottky effect,

* both of which are expected to become important at current
p

densities near JR' Therefore the curve above point A should be

treated as qualitative and not quantitative.

0 The interest of this thesis begins at point A, where the

single sheath doubles over. Between points A and B, where the

back she.ath height, AX, is less than the sheath height, XE, the

emitter sheath is non-reflecting. In this region the sheath

heights, XE and YC' remain constant while the plasma density is

proportional to net current, J ( the normalized plasma density

nc/J is constant ). Only the back sheath height, AX, changes and

the C-V curve in this region is Boltzmann ( the arc-drop is

constant ). Beginning at point B and continuing to point C, the

double emitter sheath reflects plasma ions because the back

sheath is larger than the front sheath, in other words the

C I
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CC

:

.U U 0.20 0.40 0.30 0

Figure 4.1.1 c-v Diagram with Ion Reflection for Case 1

reflective potential, Axs = Ax - 'XE is positive. The result is

that net ion loss rate, u, decreases and that arc-drop increases.

The dotted curve BD is the same double sheath except that it

assumes no ions are reflected; therefore "T is constant and arc-

drop is constant. The two curves BC and BD are almost

indistinguishable because the increase in arc-drop is small until

the net current density Is extremely small. The reason for this

(

,. ..s.. .. .. . . . . . . . .

.. . . . . . ... . .'. ..
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is that the shift speed is approximately u = 2 and therefore a

* large increase in reflective potential is required to change u ---

significantly ( the half reflection point is AX 4.0 or

approximately J = JRe '4 = .4 amp/cm2 )

9R

The curve EF is the single electron repelling emitter sheath

case. It is the limiting case for large amounts of trapped ions

O in which the double sheath peak has been completely suppressed p

by the trapped ions. As is explained in sections 3.3(d) and

3.4(d), the solution condition is satisfied by us = 0. This

curve is not topologically connected to the curve ABC; it will be

shown in section 4.2 that trapped ions move ABC toward the single

ion repelling sheath case. Curve is much steeper ( a fas-er

increase in arc-drop ) in this case because u =0 = the half

point in ion reflection is approximately J = 8 amp/cm2 ). Curve

EG is the single ion repelling case assuming no reflection and is

therefore a Boltzmann line with constant arc-drop.

At points F and C the solutions fail at the collector. .he

explanation for this failure is best given by examining figs.

4.1.2, 4.1.3, 4.1.4 and 4.1.5. Figure 4.1.2 is the normalized

plasma density through the convertor gap. The highest curve with

no reflection, Ns= 0, has the largest plasma density at the

collector but the lowest plasma density at the emitter. 7on

reflection, which decreases the ion loss rate to the emi:er,

raises the plasma density at the emitter but lowers the plasma

density at the collector. The lower plasma density at the

collector forces a smaller collector sheath height to pass the

. . . - ,



-6- CHAPTER 4

C

(Q C

00.00 0.20 O.4O 0.60 0.80 1.OC

Figure 4.1.2 Normalized Plasma Density with Reflection

7.

net current density. This can be seen from eq. 2.2.10. Figure

4.1.3 is the potential through the convertor under the same

C reflection conditions as in fig. 4.1.2. In fig. 4.1.3 the first

two spaces on the left make up the double emitter sheath, and the

last space on the right is the collector sheath. The region

between the two sheaths is the neutral plasma region. In the no

reflection case, it can be seen that the potential has a

pronounced well in the middle. This is the result of the large

plasma density in the middle. As reflection increases, this well

disappears on the collector side of the plasma because resistive

(.

,% "- '- ,' - - '--.- . .. '-- " -' ,- '-. - Z- - ' -'- - E ' -- ' ' - - - - -' -s -'- - - - - ° - -°-. -.
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0

0

C

00

C

C

0.00.20 0.'40 0.60 0.80 1.00

Figure 4.1.3 Potential Distribution in the Convertor

drop there Cdue to low plasma density )increases to the degree

( that it is greater than the ambipolar rise Cdue decreasing

density toward the collector ).Simultaneously with plasma

(7

-_ o- °-'. - ~
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potential gradient at the collector becoming negative, the

6 collector sheath go toward zero height. Figure 4.1.4 shows the

critical collector sheath quantities as the collector sheath

L

Figure 4.1.4 Collector Sheath Failure

failure occurs. Collector sheath height, xC goes toward zero,

the shift speed, u 5  goes toward negative infinity Csee fig.

,, ,,

3.4. 10 ),and the ion loss rate to the collector, W, is driven

oc

to zero. Figure 4. 1.5 shows the changes in the emitter sheath

(!

height, ion shift speed and ion loss rate. When the collector

sheath failure occurs, the ion loss rate to the collector is zero

-~• .

. . *..*...
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5 -1 15.

Figure 4.1.5 Emitter Sheath During Reflection

( c = 0 ) and the corresponding plasma ion distribution at the
c

collector is bunched at zero velocity ( Usc While the

mathematics hold self-consistantly until-u = 0, the physics isc
clearly poor at this point because " 0 demands that the plasma

c

ions at the collector have zero energy ( zero temperature and

zero mean velocity ). An estimate of when the physics becomes

poor is u - 0. At this point the net ion loss rate is close

to the thermal speed. A second physical difficulty that occurs

with collector sheath failure is that the electron Mach number

there, Q ( from eq. 2.2.10 ) becomes
c

r-7?r-T
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because the collector sheath height approaches zero ( actually

about .001 ). In the present continuum formulation of the plasma

region, it was assumed in eq. 2.1.13 that Q is small so that the .-
c

electron momentum term, uedu /dx can be neglected.

e e

One could take the solution below the collector sheath failure

point if - could attain negative values or if Q could attain
c c

values larger than V(2/). There is no physical basis for

assuming that uc can become negative since the collector emits

nothing. However, there is a physical basis for allowing Qc to

be larger than 1(2/), ( an electron distribution shift ) as can

be seen in fig. 4.1.3: the potential drop nearing the collector

becomes progressively more electron accelerating as the collector

sheath fails and therefore the electron distribution should De

shifted as the ion distribution is in an electron repelling

sheath. However, this would clearly invalidate the assumption -- I.

that the electron momentum term is negligible. Therefore the

momentum term must be added to explore further in this direction

and this has not been done because of the resulting complexity in

the equations.

Comparison of fig. 4.1.4. to fig. 4.1.5 at the co.lie=Zor

sheath failure point C Ax = 2.5, u = 0 ) shows that the ions c

loss rate to the emitter is positive. At this point the plasma

is still ignited and generating ions as can be seen from figs.

4.1.6 and 4.1.7. The ionization coefficient, A, has dropped by

50%, but the plasma electron temperature has dropped by only 5%.

Finally, we note in fig. 4.1.8 that the normalized plasza

mc + 5 - :- .-- ):""""- -'; --"' - - ,' """"".;" ''."--,'".,...,. --.-;..."
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reitne R, ha rie-..lot10%-hsisrsosil:o
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0.00 0. 50 1.0 0 1.•50 2. 025;.

Figure 4.1.6 Ionization Coefficient A, and C

resistance, R, has risen by almost 100%. This is responsible for .,'.

the increase in arc-drop and the decrease in performance. Plasma -"

resistance increases in response to reflection because the loss

of plasma electron energy to the emitter is more important than

the loss of ionization energy to the emitter. Ion reflection at

the emitter increases the normalized plasma density there, and

consequently increases the normalized loss of plasma electron

energy there. The basis of this can be seen from conservation of

electron energy C eq. 2.2.22 ),

. . .-. .....
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Brr

.50 2. 3 ..

Figure 4.1.7 Plasma Electron Temperature -.

The ion energy loss term is generally small compared to the

electron energy loss term:

=~ ~ 30- =L O L i. (02). (2)
jVd v (, O

Therefore, we take the the electron energy equation as:

7dj (3)

Since T is nearly constant ( because of the ionization kinetics
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Rii

Ri

SJ.

LAC 1.3 00 .O02. 2

Figure 4.1.8 Normalized Plasma Resistance

), the product jVd is nearly constant. Ion reflection decreases

j ( because the normalized plasma density increases ) and

therefore increases arc-drop, Vd C makes Vd a more negative

number.

If the equations are reformulated in such a way as to be valid

past the collector sheath failure point, then we can expect to

eventually see a decrease in arc-drop and a low current plateau

as the electron temperature approaches 1 ( the ignited plasma is

extinguished and the ionization source is surface emission ).

• . . . . . -
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This can be seen from eq.1. However, as we see, the collector

* failure occurs before T has dropped more than 5%. Consequently

we do not see any plateau or decrease in arc-drop as net current

density is decreased in the present calculations.

4.2 Effects of Trapped Ions

Figure 4.2.1 shows the effect of trapped ions on the C-V

0 -5 8 , A ,TL 2 .. .

=3 .9s, a,= 1.25 
.

C

0.00 0.20 0.40 0.60 0.80

Figure 4.2.1 C-V Diagram with Trapped Ions

characteristics. C The amounts of trapped ions added in this

section are parameters as yet to be determined based of the

"°o. . . ........... . . .
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definition in section 3.3. ) Curve AHIJ is the C-V characteristic

for ft= 0.10 At point A there cannot be any trapped ions sincetrt

the back sheath height, AX, is zero. Therefore the trapped C-V

merges into the non-trapped curve there. The actual amount of

trapped ions on the ftr = 0.10 curve increases from zero at point ;- "

A to the full 10%0 of a thermal distribution at point H where the

back sheath height, AX, is equal to the sheath height, XE. The

*O shift speed increases on AH from 1.95 to 3.00. This correspondes

to what is seen in fig. 3.4.8 where Ax < XE. The rise in shift

speed has been limited to 3.00 as in fig. 3.4.8. This limit is

placed on the shift speed because a sheath with height of about

1.0 should not have a pre-sheath region capable of shifting the

entire distribution so far. In fact limiting the shift speed is

* equivalent to increasing the cut-off speed for the ion

distribution function. The arc-drop decreases as result of the

increase in u and the consequent increase in the net ion losss )

rate to the emitter. A "hump" can be seen on AH where the shift

speed hits 3.00. The arc-drop is lowest on this "hump" because

the shift speed is at its maximum of 3.00. Between points H and

I the back sheath height remains equal to the sheath height, AX -

XE =X s  0. On this segment, u decreases to 1.25, therefore

increasing arc-drop. The drop in u at AX = 0 can be seen in

fig. 3.4.8 also. From point I to point J, the shift speed

remains constant at 1.25 and the ion loss rate decreases because

of reflection. The other trapped cases, f = 0.2, 0.3, and 0.4

have not been connected because they hit the 3.00 maximum shift

speed much sooner than in the f = 0.1 case as can also be seen
tr

o . . . .. . . . . . . . . . .
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from fig. 3.4.8. Point J is the collector sheath failure point.

Each of the f = 0.2, 0.3 and 0.4 curves begins at Axs = 0 and

ends at the collector sheath failure point. It should be noted

that each of the trapped ion curves failes at a higher current

* than the last because the shift speed is lower.

4.3 Effects of Surface Emission

In this section the effect of surface emission is discussed.

(YI

.!~

-c

* c

'4 I

" = .00 0.20, 0.40 0.60 O.PO 1.02.

Figure 4.3.1 C-V Diagram with Surface Emission

and Trapped Ions

• . ..............................................

• ". - .- ,



-17- CHAPTER 4

Figure 4.3.1 adds the effect of surface emission to fig. 4.2.1.

On the ftr = 0.10 curve, surface emission is added by multiplying

the actual small amount of surface emission in case 1 by a factor

of 100. This brings the surface emission up to the level in case

2, making it significant at J - 1.0 amp/cm2 . It can be seen that

surface emission increases arc-drop; it does so in exactly the

same way as reflection or trapped ions do - it decreases the net

* loss rate of ions to the emitter. Also the collector sheath

failure occurs at point K in exactly the same way as in section

4.1.

4.4 Comparison with Experimental Work

_. Figure 4.4.1 puts the isothermal results of fig. 4.3.1 next to

the experimental results of fig. 1.1.2. The point of this

comparison is that the steepness of the C-V characteristic in the

experimental convertors can be explained by a decreasing ion loss

rate to the emitter. We have shown that all three of the

expected emitter sheath phenomena decrease the ion loss rate to

the emitter. We cannot calculate the amount of trapped ions in a

collisionless sheath without knowledge of the collisional

processes. However, the experimental C-V suggests that if the

amount of trapped ions (ftr ) increases from 0% at J = 14

2
amps/cm ( the double sheath formation point ) to 30% at J = 2

2amps/cm C the collector sheath failure at f =0.30 ) then the
tr

steepness could result from trapped ions reducing the ion loss

rate to the emitter. Since these percentages are based on a

, -. -. .-.---
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OUTPUT VOLTAGE (it)-
Figure 4.4.1 Isothermal versus Experimental C-V Diagrams

emitter. Since these percentages are based on a thermal

distribution of ions, they seem physically reasonal'le.

Unfortunately, the collector sheath failure prevents us from

going to the point in the calculations where T drops enough to

make surface emission the source of ions.

t

The experimental curve is nearly a constant .05 volts beow

the isothermal result f = 0.10 ) except at high current

densities and at the "hump". Comparison of the curves at high

current density is not valid since neither the Schot:ky effect

.° o -..

' " " -"..',2 . ,. ._ " ., '- ._-•*._' '.%".. ' .''. ".".J ". "" = -= "." ." j "• ' ".,"."' "• '."' '."' "."'," ". ' " ". . '."'."_. .. ,"...''.,''..
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effect nor recombination have been included. The Schottky effect

2* is important above 12 amps/cm in this case because the emitter

sheath is single electron repelling ( to the plasma ) and

therefore puts a strong electric field against the emitter with

the appropriate sign. Recombination is also potentially

important because the plasma density scales with current density

and at high current densities the plasma density in the middle of

the convertor approaches the Saha density. The .05 volt

difference may or may not be explained by a discrepency in the

assumed collector work function. At 800 K the collector emits

essentially nothing and therefore any change in the collector

work function directly affects output voltage. If the collector

work function were in fact 1.65 vclts instead of 1.60 volts then

the isothermal result would lie nearly on top of the experimental

result. We have not adjusted the assumed collector work function

so as to illustrate the importance it and therefore the

importance of the surface physics of the adsorbed cesium layer.

The "hump" should not be taken as an expected experimental result

since it results from the interaction of the trapped ions with

the plasma-emitter sheath interface C fig. 3.4.8 ). Instead it

should be taken as a second reason C in addition to the cut-off

of the ion distribution ) for further study of the matchir.g

region between the collisionless sheath and the neutral plasma.
(D

* . . .o..
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CHAPTER 5: NON-ISOTHERMAL SOLUTIONS

0 5.1 The Implicit Computational Scheme

5.2 Non-Isothermal Results

The non-isothermal solution for the thermionic convertor is

found by integrating ( through time ) the set of parabolic

Partial Differential equations ( eqs. 2.1.14 and 2.1.15 ):

0 <

((2) ~!

CThese equations can be marched forward in time vith an explicit

scheme by computing all of the quantities on the right at'•

+ 4- r

previous time step (Lawless). This, however, encounters a

stability limit on At which slows the numerical solution

excessively. The energy equation ( eq. 2 ) has a time scale

inherently 500 times faster than the diffusion equation ( eq. 1 )

because the mass ratio of electron to ions is approximately 500.

The stability limit for the faster energy equation:

• -
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d (3)

where Ax is' the space step size, tee is the characteristic

electron energy time scale and At is the stability limit time

step size. Since the energy equation is the faster of the two in

the system, its stabilty limit controls the time step size for

the set of both equations. It can be seen that if 10 space steps

are used, then Atstab f lootelec* Since we want to find a steady 0

state solution, we need about lOtdiff, but tdiff = sootelec (

approximately ), therefore we would need about 5 x 105 time steps

to achieve a steady state solution.

The implicit scheme does not have the stability limit and

* therefore needs only 5 x 103 time steps to achieve the steady

state. Each time step requires about 104  floating point

operations ( flops ) whether or not the implicit scheme is used ( ..

assuming 10 space steps ). For the explicit scheme this would

result in 5 x 109 flops while the implicit scheme would require

7 4only 5 x 10 flops. In both cases the estimate of 10 flops in

each time step assumes that the sheath calculations are a

negligible part of this. In fact the general sheath solution

requires approximately 10 flops in its full form. This would

result in 5 x 1015 flops. Therefore, running even the implicit

non-isothermal scheme requires that a sheath model be used.

Because of this, exploring thermionic convertor sheath effects

with the non-isothermal theory is difficult and we demonstrate
o,
only the simple non-reflecting, non-trapped ion, non-surface...
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emission case in this chapter and compare it to the isothermal

result.

5.1 The Implicit Computational Scheme

The diffusion equation can be written as

and the energy equation can be written as

Ox" ++ J (2)

The quantities a through h are not constant but approximately so.

The explicit scheme is constructed as follows:

- + + + cnA.td (3)

and
Y, r + + (4) 9

where j is the time index and i is the space index. If a and e

are the only non-zero coefficients ( a and e dominate ), then the
CI

stability criteria are

and

Ai (6)
e.o

We will not analyse the stability criteria in any more detail,

. . .. -.
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but simply develop the implicit scheme which has no stability

limits. The implicit scheme is constructed by taking the

variables at the advanced time step in the right sides of eqs. 1

and 2:

- .- = a I.' _ __b_ + cn'-t (7)

A +1 '6 Y" 2&X

and

= e ,- ZZ ' -' -- ' , (8)

.A)(L .A
These equations can be written as

Ut 24 2

(9)

n3At:

and A 47
* (10)

- 7 d - hAt.

which form tridiagonal matrices, that with the boundary

conditions, can be inverted in 3N operations where N is the

number of space steps.

5.2 Non-Isothermal Results

Figure 5.2.1 shows the electron temperature distribution
ao
across the convertor gap for two cases: the non-isothermal case

- .- , - . - _

.. . ..... ... .. .. .. .. .. .. .. .. .. .. ..
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Figure 5.2.1 Non-Isothermal Electron Temperature

and the corresponding isothermal case at Axs = 0 and J = 12

2amps/cm2 . The electron temperature remains close to 2 in the

non-isothermal case. Figure 5.2.2 is the corresponding

normalized plasma density. It can be seen that the plasma

density in the isothermal case corresponds closely with -the non-

isothermal case. The seemingly large difference in plasma

density in the middle of the gap not important since its

contribution to total plasma resistance is small and all other

effects of plasma density result from the plasma density at the

emitter and collector.
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S .

CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions a

6.2 Recommendations for Further Work

6.1 Conclusions

Using only a simple isothermal model, the emitter sheath

effects of trapped ions, ion reflection and surface emission ions P

can explain the steep C-V characteristic of the thermionic

convertor. Contrary to intuition, all three of these effects

increase arc-drop in the thermionic convertor because they S

increase plasma density at the emitter and increase electron

energy loss to the emitter to a greater degree than they decrease

ionization energy loss. The low current density plateau observed

in thermionic convertors may well still be explained by surface

emission, however we cannot demonstate this because of our

collector sheath failure. p

6.2 Recommendations for Further Work
( I

.................................................. ..... . . . . . .. . . . . . . . . . . . . . . ...
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Four things should be done to carry this work forward: 1) the

continuum equations should be generalized to include the

convection of momentum terms, udu/dx, to allow the collector

sheath failure to be overcome, 2) a collisional transition region

between the neutral plasma and the collisionless sheath should be

developed to determine the appropriate cut-off for the plasma ion

distribution, 3) the collisional trapping mechanism should be

explored, and 4) a fast comprehensive sheath model should be

developed and inserted into the implicit non-isothermal

computational scheme.

0

0 S

-0
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APPENDIX A: ASYMTOTIC EXPANSIONS

A.l Particle Density in an Accelerating Potential

A.2 Particle Density in an Decelerating Potential

In this appendix we develop the asymptotic expansions for the

* integrals

V ','X.(1).

and

E' xJ ( (2)

These are needed ( in chap. 3 ) to develop the Bohm criterion

correctly and to demonstrate the necessity of a general ( as

opposed to a local ) matching condition. The expansion of these

integrals is non-trivial because the taylor expansions of

are not uniformly valid at u = 0 and u = vx respectively;

therefore we cannot use the simple method of expanding the

. . . . . . .

. . . . .
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integrand.

* S

A.1 Particle'Density in an Accelerating Potential

The expansion of this integral,

is done by splitting the domain of integration at a small fixed

non-zero point, k. On the lower part of the domain the function,

f(u), is expanded into a taylor series ( for the distribution

functions of interest this is always possible ) and on the upper

part of the domain, u/v(u 2 + X) is expanded ( uniformly because k
is greater than zero ):

f .

* -J {';)~-J-. "
(2)

+ I-- I •
f/ U 1i - _

The expansion of the upper part is complete and we need to

determine the asymptotic expansion of the lower part. We will

find the asymptotic expansions of the infinite series of

integrands and regroup the terms by order in X and then show that

(i::::

S.. .-.. '.
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the result is independent of k as it should be. Finally, we will

-S take the limit as k goes to zero and we will then have the S

result.

The asymptotic expansions of the infinite series can be found

recursively starting with the first four integrals:

2k/

= k7X X In2-) 0(

It L

_ d o~ (3)x

X + O.,-nX)

The remainder of the terms are found by integration by parts:

X)j (4))d5

which results in

,, 'di. k M (5)"

Adding and regrouping these terms produces:

.• ...
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6 npo

n! 6)

- .= = .-F-+ )- X k
= t~ o) r("- +

7_ + X (7)

+ ',J 44 + (X)4)

= feet) )u +

+ + 
(8)

Now we demonstrate that this result is independent of k. The

only term in eq. 8 containing k is the X term; therefore we take

the derivative of this term with respect to k:

._-< Jf k

Since f (u) is assumed to be expandable as a taylor series on

(O,k) the expression in brackets is zero.
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We now take the limit of eq. 8 as k goes to zero. Through

integration by parts

-,- LIP) 4  In.2,) '.--.. * ' -

if _Ju, ,,o,.'](10)

6 S

therefore we have the final result:

4.,-In x
all)

+ zlLx )

The X1/ term and the Xlnx term in eq.ll depend only on the

distribution function zero. If the distribution function has its

(11

low energy tail cut off (as in chap. 3 ),then the X 1/2 and xln'x

terms are zero and the x term can be reduced by integration by

parts ) to:

J ,' "' . /- 7CU)dUq

44'"-- (12)

+0o(x 1 ) I :.i.......-..

...
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A.2 Particle Density in an Decelerating Potential

0 The expansion of this integral,

= c.

is done by splitting the domain of integration at a small fixed 0

non-zero point, k. On the lower part of the domain the function,

f(u), is expanded into a taylor series ( for the distribution

functions of interest this is always possible ) and on the upper

part of the domain, u/(u- x) is expanded ( uniformly because k
is greater than zero ):

F(z) j e(.4  " k. , + 1I.1.a.)_.. _

v ,(o (2)

* 00

1/ 2q= " +:

The expansion of the upper part is complete and we need to

determine the asymptotic expansion of the lower part. We will

find the asymptotic expansions of the infinite series of 0

integrands and regroup the terms by order in X and then show that

the result is independent of k as it should be. Finally, we will

take the limit as k goes to zero and we will then have the

result.

?I-:L

-.2 .
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The asymptotic expansions of the infinite series can be found

recursively starting with the first four integrals: - -

f k, udL = ,O(9kt  X'i7X - - I - IV79,

4-
kk

0U

The remainder of the terms are found by integration by parts:

J t(w+x) -civ = -" + mJ (2S (4)

0 "

which results in

Jr vm-- i" L -. + o (x . (5 )•

Adding and regrouping these terms produces:

IPO

fix-u f+ I' (6)

+" t-
j.. ..{.. , .. , . . . . . , ,.23

.' '"." ' . '"." " "-.... '". .,.' .- .. " ' .". .-.' '-.- ".' " ." .- ' .-.' ',.- ' .-." .- ' . '.i". " ". ' "j.i- ,""" - " g"



-8- APPENDIX A

= n4- 5; -T( x

x IriXx (z(7
.-- ,r--( (7)

J+ (8)

+ 2 LM - ,(- '-- 4 T<OA,
__ lost "! 17 A

Now we demonstrate that this result is independent of k. The

only term in eq. 8 containing k is the X term; therefore we take

the derivative of this term with respect to k:

JtL ?- L _ -- , e) ,

Since f (u) is assumed to be expandable as a taylor series on

(O,k) the expression in brackets is zero.

We now take the limit of eq. 8 as k goes to zero. Through

integration by parts
. - .
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R-M 17! ZU(10)

i)= L- ;ei ')) + fC'?u)ahy~SU
-za

therefore we have the final result:

~0

X[- *j .6J iww do]

The xlnx term in eq.ll depends only on the distribution function

zero. If the distribution function has its low energy tail cut

off ( as in chap. 3 ) the! the xlnx term is zero and the X term

can be reduced ( by integration by parts ) to:

du.<.<, - O(X). .

................................. . .

. . . . . . . . . . . . . . . .. .
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APPENDIX B: ISOTHERMAL PROGRAMS

B.1 ISOTHER: Computes the Isothermal Solution

B.2 SHIFT: Computes the General Sheath Solution

B.3 CAL3: Computes the Sheath Solution given Ushift
and Computed the Sheath Solution for no
Trapped and no Surface Emission

I

• -I

""U.
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B.1 ISOTHER: Computes the Isothermal Solution

ISOTHER:PROC OPTIONS (MAIN);
DCL (T,DELT,X,DELX,FT,FX,DF1DT,DF1DX,DF2DT,DF2DX,

DELTIN ,DELXIN ,ER,NEWSH ,DUN,
JR,TE ,PHIW,NCS ,NCSP,NPO ,SURMULT,
Bi ,DBDT,CHITEM,UZERO,SMR,LOSSION,
CCHI ,ACHI ,OCHI ,AlAO ,TAU,RTAU ,TAUIN,NO ,Nl,
DELCHII ,DELCHIF,DELCHIS,VD,VOUTr,JJR,RATIO,
TIN ,XIN,BOTE,B1TEMN,QTEN ,QCTEMl,RTEN ,ATEM1,CTEM1,ABTEM,
AO,A1,VION,SMALLJ,DELCHI ,DELTAT,DELTAX,
ERROR1,ERROR2) FLOAT BIN(31);

DCL (FLAGCOL,ISOL,IPLASMIA,IPLATE,ISINGLE,ISPEED,
ISUR) EXT FIXED BIN(31);

DCL (I,J,ICASE,ICASEST,INERTIA,IDELCHI,IONIZA,IA1AO) FIXED BIN(31);
DCL (CUTOFF,TRAPPED,SURFACEUIN,VIONC,UCSHIFT,CCUIT,

( MUI,M4UEA,KN,LAMDAR) EXT FLOAT BIN(31);
DCL (ABINV,A,RQ,Q,BETAO,BETAI,SHIFT,INVB1) EXT ENTRY

RETURNS(FLOAT BIN(31) )
CCLUIhCUTOFF;
SMR=l./492.2;
IPLASMA=O; IPLATE=O;
SURMULT 1.;

0 GET FILECISODAT) DATA;
ICASE=ICASEST-l;
LOOP:DO DELCHI=DELCHII TO DELCHIF BY DELCHIS;
ICASE=ICASE+l;

SHIFTLP:DO J1l TO 3;

IF(FLAGCOL=O) THEN BEGIN;

/* SET INITIAL ITERANTS IF FIRST CASE *
IF (ICASE=ICASEST) THEN BEGIN;
T=TIN ;X=XIN;
TAU=TAUIN;

END;
FT=Fl(T,X) ;FX=F2CT,X);
CON:DO I= 1 TO 20;
DELTIN=.05;
DELXIN=.05;

C DELT=CEXPCDELTIN)-l. )*T;
DELX=(EXP(DELXIN)-l. )*X;
DFIDT=(Fl(T+DELT,X)-FT)/DELTIN;
DFlDX=(F CT ,X+DELX) -FT) /DELXIN;
DF2DT=(F2CT+DELT,X) -FX)/DELTIN;
DF2DX=(F2 (T,X+DELX) -FX)/DELXlN;
DELTAT=(FX*DFlDX-FT 'DF2DX) /(DFlDT"-DF2DX-DFlDX*DF2DT);
DELTAX=(FT*'-DF2DT-FX*DFlDT) /(DF1DT--'DF2DX-DFlDX*DF2DT);
T-EXP (DELTAT)*~T;
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X=EXP CDELTAX)*X;
FT=F1 (T,X);
FX=F2(T,X);
IF(ABS(FT)<=ERRORI ABS(FX)<=ERROR2) THEN GO TO FIN;

END CON;,
PUT FILE(ISOPRT) SKIP LIST('FAILED TO CONVERGE');
PUT FILE(ISOPRT) SKIP DATA;
STOP;

* END;
U ELSE BEGIN;

T0-.O;
/* SET INITIAL ITERANTS IF FIRST CASE *
IF CICASE=ICASEST) THEN BEGIN;
X=XIN;
TAC=TAUIN;

END;
FX=F2(T,X);
CON2:DO I= 1 TO 20;
DEL.XIN=.05;
DELX=(EXP(DELXIN)-1. )*X;
DF2DX=(F2 CT,X+DELX)-FX) /DELXIN;
DELTAX=-FX/DF2DX;
X=X*EXP (DELTAX);
FX=F2CT,X);
IF(ABS(FX)<=ERROR2) THEN GO TO FIN;

END CON2;
PUT FILE(ISOPRT) SKIP LIST('FAILED TO CONVERGE');
PUT FILE(ISOPRT) SKIP DATA;
STOP;
END;
FIN:

IF(FLAGCOL-0) THEN BEGIN;
T=.001;

B1TEM=-AThM*COS (ATEM+CTEM)/SIN(ATEI+CTEM);
IF(FLAGCOL-2) THEN BEGIN;
B1=BETA1 CTAU ,T,QCTEM) -BiTEM;
CON3:DO I = 1 TO 20;
DBDT=(BETAI (TAU,T+DELT,QCTEM)-BITEM-Bl)/DELT;
DELTAT=-B1/DBDT;
T=T+DELTAT;
B1=BETAl (TAU,T,QCTEM) -B iTEM;
IF(ABS(Bl)<=ERROR2) THEN GO TO FIN];

END CON3;
PUT FILE(ISOPRT) LIST('Bl LOOP FAILED TO CONVERGE');
STOP;

P END;
ELSE BEGIN;
DUM1WNB1 (TAU,B1TE1);
END;
END;
FINI:

NEWSH=SHIFT(TAU,X,CHITEI,TRAPPED,SURFACE);
ERSH=NEWSH-UIN;

.
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UIN ,UZERO=NEWSH;

6 END SHIFTLP;

PUT FTLE(ISOPRT) SKIP DATA;
PUT FILECISOPLOT) SKIP(2) EDIT('DELCHI(' ,ICASE,
')=',DELCHI, ',)

CAC7) ,FC2),A(2) ,E(13,5) ,A~l));
* PUT FILE(ISQPLOT) EDIT('R(',ICASE,

(AC2) ,FC2) ,AC2),E(13,5) ,AC1));
PUT FILE(ISOPLOT) EDIT('MACHE(' IICASE,
)=',QTEM, , )

CA(6) ,F(2) ,A(2) ,E(13,5) ,A(l));

0 PUT FILE(ISOPLOT) SKIP EDIT('BETAO(',ICASE,

(A(6) ,F(2) ,A(2) ,EC13,5) ,A(l));

PUT FILE(ISOPLOT) EDIT('BETAI(' ,ICASE,

(A(6) ,FC2),AC2) ,EC13,5) ,A(l));
PLUT FILE(ISOPLOT) EDIT('A(,ICASE,
' )=',ATEM, , ')

CA(2) ,FC2) ,A(2) ,E(13,5) ,A(1))
PU"T FILE(ISOPLOT) SKIP EDIT('SMALLJ(',ICASE,

)=' ,SMALLJ,',')
(A(7) ,F(2) ,A(2) ,E(13,5) ,A(1))

0 PUT FILE(ISOPLOT) EDIT(tECHI(',ICASE,
IWx )

(A(S) ,F(2) ,A(2) ,E(13,5) ,A(l))
PUT FILECISOPLOT) EDIT('TAU(',ICASE,

(A(4) ,F(2) ,A(2) ,E(13,5) ,A(1))
VD=-2*(TAU-1. )/SMALLJ;

I. IF(IONIZA'0) THEN VD=VD-LOSSIQN;
PUT FILE(ISOPLOT) SKIP EDIT('VDC,ICASE,

')'VD,', ')

(A(3) ,F(2) ,A(2) ,E(13,S) ,A(l));
JJR=SMALLJ*EXP(C-X-DELCH I);
PUT FILE(ISOPLOT) EDIT('JJR(' ,ICASE,

I' ')=' ,JJR,',')
(A(4) ,F(2) ,A(2) ,E(13,5) ,A(1))
VOUT=X+DELCH I+VD;
IF(T<O.) THEN VOUT=VOUT+T;
PUT FILE(ISOPLOT) EDIT('VOUT(' ,ICASE,

(A(S) ,F(2) ,A(2) ,E(13,5) ,A(l));
ACHI=TAU*LOG(SIN(ATE1+CTEMi)/SIN(CTEM));
PUT FILE(ISOPLOT) SKIP EDIT('ACHI(',ICASE,

(A(5) ,F(2) ,A(2) ,E(13,5) ,A(l));
OCHI=SMALLJ*RTEM;
PUT FILECISOPLOT) EDIT('OCHI(1 ,ICASE,

(A(5) ,F(2) ,A(2) ,E(13,5) ,A(1));
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PUT FILECISOPLOT) EDIT('CCHI(',ICASE,

r(A(S) ,FC2) ,AC2),E(13,5) ,AC1));
PUT FILECISOPLOT) SKIP EDIT('AO(' ,ICASE,

(A(3) ,F(2) ,A(2) ,E(13,5) ,A(1));
PUT FILECISOPLOT) EDIT('A1C,ICASE,

* ~(A(3) ,F(2) ,A(2) ,E(13,5) ,A(l)) ;
PUT FILE(ISOPLOT) EDIT(C(',ICASE,

(A(2) ,F(2) ,A(2) ,E(13,5) ,A(1));
PUT FILECISOPLOT) SKIP EDIT('VAVE(',ICASE,

O ~(A(S) ,FC2) ,AC2),E(13,5) ,A(l)) ;
PUT FILE(ISOPLOT) EDIT('UZERO(' ,ICASE,
')=',UZERO,',')
(A(6) ,F(2) ,AC2) ,E(13,5) ,A(l));
PUT FILECISOPLOT) EDIT('CUTOFF(' ,ICASE,
)=' ,CUTOFF,',')

4' (A(7) ,F(2) ,A(2) ,E(13,5) ,A(1)) ;
PUT FILE(ISOPLOT) SKIP EDIT('TRAPPEDC,ICASE,
')=' ,TRAPPED,',')
(A(8) ,F(2) ,A(2) ,E(13,5) ,A(l))
PUT FILE(ISOPLOT) EDIT(1SURFACECt ,ICASE,
')=' ,SURFACE,',')

* (A(8) ,F(2) ,A(2) ,E(13,5) ,A(l));
PUT FILE(ISOPLOT) EDIT('ISOL(' ,ICASE,

') 'ISOL,', )
(A(S) ,F(2) ,A(2) ,F(2) .A(1))
PUT FILECISOPLOT) EDIT('IONIZAC' ,ICASE,

)=' ,IONIZA, ',')
* ~(A(7) ,F(2) ,A(2) ,F(2) ,A(1)) ;

N=1 . /QTEM;
PUT FILE(ISOPLOT) SKIP EDIT('NO(',ICASE,

')'NO, ', ')

(A(7) ,F(2) ,A(2) ,E(13,5) ,A(l));
PUT FILECISOPLOT) EDIT('VIONC(' ,ICASE,

CA(6) ,F(2) ,A(2) ,E(13,5) ,A(1));
PUT FILE(ISOPLOT) EDIT('UCSHIFT(',ICASE,
)=',UCSHIFT,',')

(A(8) ,F(2) ,A(2) ,E(13,5) ,A(1));
N11 ./QCTEM;
PUT FILECISOPLOT) SKIP EDIT('Nl(',ICASE,

(A(7) ,F(2) ,A(2) ,EC13,5) ,A(1));
PUT FILE(ISOPLOT) EDIT('ERSH(t ,ICASE,

(A(S) ,F(2) ,A(2) ,E(13,5) ,A(1))
PUT FILE(ISOPLOT) SKIP EDIT('FLAGCOL(' ,IGASE,

)=' ,FLAGCOL,' ,')
(A(8) ,F(2) ,A(2) ,E(13,5) ,A(1))

END LOOP;
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RETURN;
Fl:PROC(CX,XX) RETURNS(FLOAT BINC31));

*DCL (CX,XX,F1X) FLOAT BINC31);
IF(IDELCHI=O) THEN CHITEM=O.;
ELSE CHITEM=DELCHI;
QTEM=Q(TAU,XX,CHITEM,SMALLJ,VION,UZERO);

/* SURFACE EMISSION *
* TE=1SO. ;PHIW=1.60;JR=20.;

JJR=SMALLJ"*EXP(-XX-CHITEM);
NCS=6.44E+15*C15OO./TE);
NCSP=NCS/2./I(.+2.*EXP((3.89-PHIW)*116OO./TE));
NPO= (JJR*JR)*2.925E+11/QTEM*(1500./TE);
SURFACE=NCSPINPO*2 .*EXP(CHITEM);

*SURFACE=SURFACE*SUR'MCLT;a
IF (ISUR=O) THEN SURFACE=O.;

BOTEMlBETAO (TAC ,XX, QTEM ,V] JN);
QCTEMl=SQRT(2 ./3. I4159)*EXP(-CX/TAU)/C1 (CX/TAU);
IF(FLAGCOL-O) THEN BEGIN;

B1TEfl=BETA1 (TAC ,CX ,QCTEM);
END;
ATEMl=A(BOTEM ,BlTEMl,QTEMl,CT-EM);
TAU=ABINV (ATEM);
AO=SQRT(3.I4l5927/2.)TEM-"( ./S'MALL3-1.W-'EXP(XX/TAU);
IF(CX/TAU<=O.) THEN

* Al1l.;
ELSE

A1AO=A1/AO;
IF (IA1AO=O) THEN AlAOl1.;
FlX=CX-XX-TAU*LOG(SIN(ATEM+CTEM)/SIN(CTEM))

* -TAU*LOG(AlAO)-TAU-.'LOG(l ./SMIALLJ-1.);

RETURN(F1X);
END Fl;
F2:PROC(CX,XX) RETURNS(FLOAT BIN(3l));

DCL (CX,XX,RQTEM,F2X) FLOAT BIN(31);
IF( IDELCHI=O) THEN CHITEM=O.;
ELSE CHITEM=DELCHI;
QTEM=Q(TAU ,XX ,CHIE 1, SMALLJ ,VION ,UZERO);

/* SURFACE EMISSION *
TElSO0. ;PHIWl1.60;JR=20.;
JJR=SMALLJ*EXP (-XX-CHITEM);
NCS6.44E+15*(15OO./TE);
NCSP=NCS/2./(l.+2.*EXP((3.89-PHIW)*11600.' 3));
NPO= (JJR*JR)*2.925E+11/QTEMi'.Nl500./TE);
SURFACENCSP/,NPO*2.',EXP(CHITEM);
SURFACE=SURFACE*eSURMULT;
IF (ISUR=O) THEN SURFACE=O.;

BOTEMlBETAO (TAU,XX ,QTEM , VION);
QCTEM=SQRT(2./3.14159)*EXP(-CX/TAU)/C1(CX/TA);
IF(FLAGCOL=O) THEN BEGIN;
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BlTEM=BETA1 (TAU,CX,QCTEM);
END;

* ATEM=A(BOTEM,BlTEM,QTEM,CTFM);
TAU=ABINVCATEM);
AO=SQRT(3.1415927/2.)*QTEM*1./SMALLJ-1.)*EXP(XX/TAU);
RQTEM=-RQ(ATEM ,CTEN);
RTEM=RATI O*RQTEM*Q~i/ SMALLJ*TAU*

4./SQRTC2.*3. 1415927);
* IF(CX/TAU<=O.) THEN

Al1l.;
ELSE
A11 . /C1 CCX/TAU);
A1AO=A1/AO;
IF(IA1AOO0) THEN A1AO~l;

* F2X= 2.*(1.-TAU)/SMALLJ + SMALLJ*RTEM
+TAU*LOGCSIN(ATEM+CTEM)/SIN(CTE1))+XX-CX;

IF(INERTIA-O) THEN BEGIN;
F2X=F2X

-TAU*QTEM**2/2.*C1. -CSIN(CTEM)/SIN(ATE1+CTEM))**2);
END;
IF(IONIZA'0O) THEN BEGIN;
LOSSION=SMR*(VION+VIONC*SIN(ATEM+CTEM)/SIN(CTEM))/

QTEM*3.896/8.6O9E-O5/TE;
F2X=F2X-LOSSION;
END;
RETURN (F2X);

END F2;
Cl :PROC(XX) RETURNS(FLOAT BIN(31)); 0
DCL (XX,C1X) FLOAT BIN(31);
IF(XX<0O.) THEN C1X=1.;
ELSE C1Xl .+ERF(SQRT(XX));
RETURN(C1X);

END Cl;
C2:PRQC(XX) RETURNS(FLOAT BIN(31));
DCL (XX,C2X) FLOAT BINC31);
C2X=EXP(XX)*(1. -ERF(SQRT(XX)));
RETURN(C2X);

END C2;
END ISOTHER;
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B.2 SHIFT: Computes the General Sheath Solution

SHIFT:PROC(CE,PHIM,R,TRAPPED,SURFACE) RETURNS(FLOAT BINC31));
DCLCBETA,BETATEM,CI ,SCI ,CE ,R,UR,

* NEB ,NPLASM4A,
Cl,C2,C5,C6,PHIM, 9

PLASMA,SURFACE,
CHI,
URL,URH,MURN,URM,
TEMi ,TEM2 ,TEM3 ,TEM4 ,TEM5 ,TEM6 ,TEM7)

DLFLOAT BINC3l);
DC(I,ICASE) FIXED BIN(31);

DCL(FIB ,FID,FII)
EXT ENTRY(FLOAT BINC31),FLOAT BINC3l),
FLOAT BIN(31),FLOAT BIN(31),FLOAT BIN(31))
RETURNS( FLOAT BIN(31));

C DCL (FEB,FIJ) EXT ENTRY(FLOAT BIN(31),FLOAT BIN(31),
FLOAT BIN(31),FLOAT BIN(31))
RETURNS( FLOAT BIN(31) )

DCL (TRAPPED) FLOAT BINC3l);
DCL (M) FIXED BIN(31) EXT;
M=20;

C1=1. ;BETATEM=.l;
SCI=SQRT(CI);
BETA=BETATEM*SQRTCCE/2.);

URH=3. ;URL=--3.;
LOOPUR:DO I = 1 TO 10;

URM=(URL+URH)/2.;
MURM=MININT(URM); NU U;

ELSE URH=URM;
END LOOPUR;
FINUR:UR=URM*SQRT(2 . CE);
RETURN CUR);

CMININT:PROC(URTEM) RETURNS( FLOAT BIN(31));

DCL (URTEM,FNETMIN,TEMP) FLOAT BIN(31);
DCL J FIXED BIN(31);
CHI=PHIM;NEB=(EA(URTEM,R)-K3(CHI))/K4(CHI);
CHI=O. ;FNEnTIN=EA(UTEM,R)-K3(CHI)-K4(CHI)*NEB;
LOOP:DO 3=1 TO 25;

CHI=J*PHIM/25.;
TEMP=EA(URTEM ,R) -K3 (CHI )-K4 (CHI )*NEB;
FNETMIN=MIN(FNETM4IN,TEMP);

END LOOP;
LOOP2:DO 3=1 TO 10;

CHI=J*PHIM/250.;
TEMP=EA(CRTEM ,R) -K3 (CHI )-K4 (CHI )*NEB;
FNEThIN=MIN(FNETMIN,TEMP);

END LOOP2;
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RETURN(FNETMIN);

END MININT;

EA:PRQC(TUZERO,TR) RETURNS(FLOAT BIN(31));
9CL(TUZERO,TR,TEMlEA,TPHIM,TPHIZ ,SQZM, SQPI,

IOXZN,IZMXX,IOM,
SQZX,IZXI,IOX,IZMXI,SQXZM,IZI,IZMI)

FLOAT BIN(31);
* TPHIM=PHIM;TPHIZ=(PHIN+TR);

IFCTPHIZ>=TPHIM) THEN BEGIN;

SQZM=SQRT(TPHIZ-TPHIM);
SQZX=SQRT(TPHIZ-CHI);

* IZMI=(l.-ERF(SQZM))*SQRT(3.141S926)/2.;
IOM=ERF(SQRTCTPHIM))*SQRTC3. 1415926)/2.;
IZXI=(l.-ERF(SQZX))*SQRT(3.1415926)/2.;
IOX=ERF(SQRT(CHI))*SQRT(3. 1415926)/2.;
IZI=(1.-ERF(SQRT(TPHIM)))*SQRTC3.1415926)/2.;
IZMIXIC1I.-ERFCSQRTCTPHIZ-TPHIM+CHI)))*SQRT(3.1415926)/2.;
PLASMA=(SQRT(3. 1415926)-SURFACE*IZMI)/

(FID(BETA/SCI,1000000.,1.,TUZERO,0.) +
FID(BETA/SCI,SQZM,1. ,TUZERO,O.) )

TEMEA=2. *PLASMA*
CFII(BETA/SCI,1000000. ,1.,TUZERO,

SQRT(CHI))-
FII(BETA/SCI,1000000. ,1.,TCZERO,

0.) +
FII(BETA/SCI,SQZM,1. ,TUZERO,

SQRT(CHI))-
FII(BETA/SCI,SQZM,1. ,TUZERO,

0.))
+ TRAPPED*

( 2.*EXPCCHI)*I0X-2.*SQRT(CHI))
+SURFACE*~

CEXP(TPHIM-TPHIZ)*SQRT(TPHIZ-TPHIM+CHI)
+EXP(CHI )*IZM.XI
-SQRT(TPHIZ-TPHIM)*EXP (TPHIM-TPHIZ)
-IZMI )

TEMEA=TEMEA/SQRT(3. 1415926);
END;
ELSE BEGIN;

SQPI=SQRT(3. 1415926);
PLASMA=SQPI*(l. -SURFACE/2. )/

FID(BETA/SCI ,1000000., 1. ,TUZERO,0.);
TEMEA=

2.*PLASMA*(FII(BETA/SCI,1000000. ,1.,TUZERO,
SQRT(CHI)) -

FII(BETA/SCI,1000000. ,1.,TCZERO,
0.) )/SQPI;

IF(CHI<=TPHIM-TPHIZ) THEN BEGIN;
I0X=ERF(SQRT(CHI))*SQPI/2.;
TEEA=TEMEA + SURFACE*
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CSQPI/2.*(EXPCCHI)-l.)

EN; +EXPCCHI)*IOX-SQRTCCHI))/SQPI;

ELSE BEGIN;
SQXZM=SQRTCCHI+TPHIZ-TPHIM);
IOXZM=SQPI*ERFCSQXZM) /2.;
IZMXI=(1.-ERF(SQRT(TPHIZ-TPHIM+CHI)))*SQPI/2.;
IZMXX=( ERF(SQRTCCHI))

-ERF(SQRT(TPHIZ-TPHIM+CHI)) )*SQPI/2.;
TEMEA=TEMEA + SURFACE*

CSQRTCTPHIZ-TPHIMl+CHI )*EXP(TPHIM-1TPHIZ)*2.
+EXP CCHI )*IZMXI
-SQPI/2. -SQRT(CHI)+EXPCCHI)*IZMXX)/SQPI

+TRAPPED*(2.*EXP(CHI)*IXZM1

0 END; 2.*EXP(TPHIM-TPHIZ)*SQXZM)/SQPI;

END;
RETURN(TE31EA*CI);
END EA;

K3:PROC(CHITEMi) RETURNS( FLOAT BINC31));
DCL(CHITEM) FLOAT BIN(31);
TEMI=SQRT(3.1415926)/2.;
TEM3=SQRTC3.1415926)/2.*ERF(SQRT(PHIM/CE));

0 C5= (l.-EXP(-CHITEM/CE))+ EXP(-CHITEM/CE)*(
2*FII(O.,SQRT((PHIM-CHITEMt)/CE),1. ,O. ,SC(RT(CHITEM1/CE))-
2*FII(O.,SQRT((PHIM-CHITEM)/CE),l.,O.,O.) * I

2./SQRT(3.1415926)+
2*FII(O.,SQRTCCHITEM/CE),l.,O.,O.)*2./SQRTC3.1415926);

-. RETURN(C5*CE/C1);
END K3;

K4:PROC(CHITEM) RETURNS( FLOAT BIN(31));
DCL(CHITEM) FLOAT BIN(31);
TEM1=SQRT(3.1415926)/2.;
TEM2=TEM1;
TE!I3=SQRT(3. 1415926)/2.*ERF(SQRT(PHIM/CE));
TEM4=FID(O. ,1000000. ,1.,O. ,SQRT(PHIti));
TEM6=2*FII(O. ,1000000.,l.,O.,SQRT(PHIM));
TEM17=2*'FII(O.,100000.,1.,O.,SQRT(PHINl-CHITEN));

Cl=(TEM1+TEM3)/ (TEMl);
C2=TEM'4,'TEM2;
C5= (l.-EXP(-CHITEM/CE))+ EXP(-CHITEM/CE)*(

2*FII(O. ,SQRT((PHIM-CHITEM)/CE),l. ,O. ,SQRT(CHITEM/CE))-

2. /SQRT(3. 1415926)+

L C6=(TEM6 -TEM7 )/TEM2;
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RETURN(C6-C2*C5*CE/C 1);
END K4;

END SHIFT;
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B.3 CAL3: Computes the Sheath Solution given Ushift
and Computed the Sheath Solution for no
Trapped and no Surface Emission

* CAL3:PROCCECHI,PHIZ,CE,CI,BETATEM,MR,ERROR,UZERO,BNEB,BJNET,VAVE);
DCL(BETA,BETATEMCI ,SCI ,CE,ALPH,BET,R,UR,

NEB ,NEP ,BNEB ,BJNET,JNET,VAVE,
Cl,C2,C3,C4,CS,C6,H,PHIM,ECHI,
FO,Fl,F2,URO,UR1,UR2,
KI ,K2,K3,K4,

0 JION,JEE,RZ,
JEP,PLASIA,
DELX ,DELTAX ,X ,HX, DHDX,
UP,MR,ATEM,
ERROR ,PHIZ ,TEM1,
TEM2,TEM3,TEM4,TEM5 ,TEM6,TEM7,UZERO)

C FLOAT BINC31);
DCL(FIB,FID,FII)

EXT ENTRY(FLOAT BINC31),FLOAT BINC3l),
FLOAT BIN(31),FLOAT BINC31),FLOAT BIN(31))
RETURNS( FLOAT BIN(31));

DCL (FEB,FIJ) EXT ENTRY(FLOAT BINC31),FLOAT BIN(31),
* FLOAT BIN(31),FLOAT BIN(31))

RETURNS( FLOAT BIN(31) )
DCL(I,J) FIXED BINC31);
DCL(M,ISOL,ISINGLE,ISPEED,IPLASMA,IPLATE) FIXED BIN(31) EXT;
DCL (TRAPPED,SURFACE,INTERR,NENO,UIN) FLOAT BIN(31) EXT;

EXTERNAL VARIABLE INPUTS
/* ISOL = 0 FOR CUTOFF ION DISTRIBUTION BOHM *

1*= 1 SQRT(CHI) MATCHING
/* ISINGLE= 0 FOR DOUBLE SHEATH

1*= 1 SINGLE SHEATH
/* ISPEED = 0 MATCHED SHEATH

1*= 1 VSHIFT INPUT
1*= 2 VSHIFT = VAVERAGE *

/* IPLASMA= 0 FOR FULL PLASMA ELECTRON DYNAMICS
/* IPLATE =0 FOR FULL PLATE ELECTRON DYNAMICS

PHIrI=ECHI;
R=(PHIZ-PHIM)/CI;
SCI=SQRT(CI);
BETA=BETATEM*SQRT(CE/2.);
TEMI=SQRTC3. 1415926)/2.;
TEM2=TEMI;
TEM3=SQRT(3.1415926)/2.*ERF(SQRT(PHIM/CE));
TEM4=FID(0. ,1000000.,4. ,O. ,SQRTCPHIM));

/~e TEM4=SQRT3.1415926)/2.*EXP(PHIM)*C1.-ERF(SQRT(PHIM))); /
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TEM5=FEB(0. ,1000000. ,1.,PHIM);
/* TEM5=1./SQRTPHI1)-2.*EXP(PHIM)*SQRT(3.1415926)/2.*

* ~(1. -ERF(SQRT(PHIN))); *
TEM6=2*FII(0. ,1000000.,1.,O. ,SQRTCPHIM));
,TEM7=2*FII(O. ,1000000. ,l. ,. ,0.);

Cl=(TEM1+TEM3)/CTEMl);
C2=TEM4/TEM2;

* C3=2.*(TEM1+TEM3)/TEM1+SQRT(CE/PHIM)*EXP(-PHIM/CE)/TEMl;
C4=TEM5/TEM2;
C5=( TEM3-SQRTCPHIM/CE)*EXPC-PHIM/CE)+

SQRTC3.1415926)/2.*C1l.-EXP-PHI1/CE)) )
(TEN 1;

C6=(TEM6-TEM7)/TEM2;

o IF (IPLASMA-0) THEN BEGIN;
C1=2.;
C3=4.;
C5=2.*(1.-EXP(-PHIM/CE));
END;
IF(IPLATE-0) THEN BEGIN;

( C2=1./SQRT(1.+3. 14159*PHIM);
C4=3.14159/2./C1.+3.14159*PHIM)**(1.5);
C6=2./3.14159*(SQRTC1.+3.14159*PHIM)-l.);
END;

Xl=C3/CE/Cl;
* K2=C4+C2*C3/CE/Cl;

K3=C5*CEI Cl;
K4=C6-C2*C5*CE/Cl;

IF(ISPEED=O) THEN BEGIN;
IF(ISOL=0O) THEN BEGIN;

* URO=2.O;FO=F(URO);
UR1=2.1;F1=F(URl);
END;
ELSE BEGIN;
URO=1.O;FO=F(URO);
UR1=1.1 ;Fl=F URl);

r END;
CON:DO I= 1 TO 20;

UR2=UR1-(URl-URO)/ (F1-FO)*Fl;
F2=F(UR2);
IF(ISOLO) THEN BEGIN;
IF(ABS(F2)<=ERROR) THEN GO TO FIN;
END;
ELSE BEGIN;
IF(ABS(F2)<=ERROR*TRAPPED) THEN GO TO FIN;
END;
URO=UR1 ;FO=Fl;
UR1=UR2 ;Fl=F2;

(END CON;
PUT FILE(AUXPRT) SKIP LIST('FAILED TO CONVERGE');
STOP;
F:PROC(XX) RETURNS(FLOAT BIN(31));
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DCL (FX,XX) FLOAT BIN(31);
IFCISOLO) THEN BEGIN;
ALPH=(Kl-BACXX,R))/K2;
BETC(EACXX,R)-K3)/K4;
IF( ISINGLE=O) THEN
FX=ALPH-BET;
ELSE
FX=ALPH-NENO;

I. END;
ELSE BEGIN;
BETA=O.;
IF(R>0O.) THEN BEGIN;
FX=2. *TRAP.PED-EXP(C-XX** ) /

CFID(BETA/SCI,1000000. ,1.,XX,O.) +

EN D;I
ELSE BEGIN;
FX=SURFACE -EXP(C-XX*2 ) /

(FIDCBETA/SCI,1OOOOO. ,1. ,XX,O.) )
END;
END;
RETURN(FX);

END F;
END;

IF(ISPEED1l) THEN BEGIN;
UR2=UIN*SQRTCCE/2 ./C

END;

IF(ISPEED=2) THEN BEGIN;
IF(R<0O.) THEN UR2=UIN;
ELSE UR2=UIN*EXP(-R)*SQRTCCE/2.C)

END;

FIN:UR=UR2;
IF(ISOL-O) THEN
ALPH,BET=(EACUR,R)-K3)/K4;
NEBC(BET+ALPH)/2.;

a IF(ISINGLE-O) THEN
NEB=NENO;
INTERR=NEB-BET;
NEP=(1. -C2*NEB)/Cl;
IF R>O. THEN
UP=MAX(BETA,SQRT(R)*SCI ,Q.);
ELSE UP = MAX(BETA,O.);
IF R<0O. THEN RZ=O.;t
ELSE RZ=R;

ATEM=( FIJ(UP/SCI,1000000.,1.,UR) -SURFACE*.5*EXP(-R) )
CFID(BETA/SCI,1000000.,1.,UR,O.) + FID(BETA/SCI,UP/SCI,1.,UR,O.)

+ SURFACE*SQRTC3.1415926)/2.*(l.-ERF(SQRT(RZ))) )

JION=SQRT(CI/NR)*ATEM;
VAVE=SQRT(2 ."CI/CE)*ATEM;
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JEE= -NEB/SQRT(3. 1415926);
JEP= -(l-C2*NEB)/C1/SQRTC3.1415926)*SQRTCCE)*

EXPC-PHIM/CE);a
JNET=--JEE+JEP;
BNEB=NgB;
BJNET=-JNET/SQRT(CE/2.);
UZERO=UR*SQRTC2.*CI/CE);

PUT FILE(REFPRT) SKIP DATA(Cl,C2,C3,C4,C5,C6,NEB);
RETURN;

BA:PROC(TUZERO,TR) RETURNS(FLOAT BIN(31));
DCL(TUZERO,TR,SQTR,TEMBA,Bl ' B2 ,B3 ,B4) FLOAT BIN(31);

B1=FIB(BETA/SCI,1000000.,l.,TUZERO,Q.);
B3=CI*FID(BETA/SCI,1000000.,1. ,TUZERO,O.);

IFCTR>(BETA/SCI)**2) THEN BEGIN;
SQTR=SQRT(TR);
B2=FIBCBETA/SC1,SQTR,1. ,TUZERO,O.);
B4=CI*FID(BETA/SCI,SQTR,1. ,TUZERO,O.)I
TEMBAC(Bl+B2)/ (B3+B4);

END;

ELETEMBA=Bl/B3;

RETURN(TEMBA);
END BA;

EA:PRD~C(TUZERQ,TR) RETURNS(FLOAT BIN(31) 1;
DC.TZRRTMATH ,PHZS ",Qr)ISFI

IZI ,IZMI ,IOM,IOZ,IZM)
FLOAT BIN(31);
TPHIM=PHIM/CI ;TPHIZ=TPHl1+TR;
IF(TPHIZ-0.) THEN TPHIZ=O.;
IF(TPHIZ>=TPHIM) THEN BEGIN;
SQZM=SQRT(TPHIZ-TPHIM);

* IZMI=(1.-ERF(SQZM))*SQRT(3.141592b)/2. ,

IOM=ERF(SQRT(TPHIM))*:SQRT(3.141592b)/2.-
IZI=C1.-ERF(SQRT(TPHIM)))*SQRT(3.141592 )/2.;
PLASMA=(SQRT(3. 1415926)-SRFACE*IZ2I )/

(FID(BETA/SCI,1000000. ,1.,TUZERO,O.)
FID(BETA/SCI,SQZM,1.,TUZERO,Q.) )

TEMEA=2.*PLASMA*
(F21(BETA/SCI,1000000. ,1.,TVZERO,

SQRT(TPHIM)) -

FII(BETA/SCI,1000000. ,1. TUZERO,
0.) +

FII(BETA/SCI,SQZM,1. ,TUZERQ,
SQRT(TPHIM))-

FII (BETA/SCI ,SQZM, 1.,TUZERO,
0.))

+ TRAPPED*
(2.*EXPCTPHIM)*I0O1-2.*SQRT(TPHIM))

+ SURFACE*
CEXP(TPHIM1)*~IZI+EXP(TPHIM-TPHIZ)*SQRTCTPHIZ)
-IZMI-SQZ!1"EXP(TPHIM-TPHIZ) )

TEMEA=TEMEA/SQRTC3. 1415926);
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END;
ELSE BEGIN;

*SQZ=SQRT(TPHIZ); 0
SQM=SQRT(TPHIM);
SQPI=SQRT(3.1415926);
I0Z=SQPI*ERF(SQZ)/2.;
IZI=SQPI/2. -I0Z;
IZN=SQP1/2.*(ERFCSQM)-ERF(SQZ));

* PLAS14A=SQPI*(l.-SURFACE/2.)/
FID(BETA/SCI,1000000. ,1.,TUZERO,0.);

TEMEA=SURFACE*(EXPCTPHIM)*CIZI+IZM)
+2 .*SQZ*EXP(TPHIM-TPHIZ)
-SQM-SQPI/2. )/SQPI

+TRAPPED*(2 .*EXPCTPHIM)*I0Z-
* 2. *EXP (TPHIM-TPHIZ)*SQZ) /SQPI

+2.*PLASMMA*(FII(BETA/SCI,4000000.I. ,TUZER0,
SQRT(TPHIM)) -

FII(BETA/SCI,4000000. ,1.,TUZERO,
0.) )/SQPI;

END;
RETURN(TMEA*?CI);
END EA;

END CAL3;
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C.1 PREDCOR: Computes the Unsteady
Non-Isothermal Solution

C.2 SHEATH: Computes the Sheath Model Solution
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C.1 PREDCOR: Computes the Unsteady Non-losthermal Solution

/* PREDCOR FOR FULL TEC */
/* APRIL 27, 1980: REVISED TO INCLUDE YEN FACTOR
/ 1* MAY 4, 1980: REVISED TO INCLUDE IVD, FINAL DOT, ELOSSB, /"
/* AND CORRECT BURS IN BC. /

PREDCOR:PROC( TI, T2, TAU, NEB, NSTEPS, TE, TC, ENR, CNR,
TDOT1, NDOT1,
PN, SMR, LAMDAR, KN, NR, ARECN, TCHAR, EGNDB, RE,
N,I, AN, AT, BN, BT, CN, CT) REORDER;

DECLARE
SUMV ENTRY((*) FLOAT DEC(16),FIXED BIN(31),FIXED BIN(31))

RETURNS(FLOAT DEC(16)),
SQRT BUILTIN,

/*THE FOLLOWING TIME VARIABLES ARE NOND BY TCHAR. 6/
(T1,T2, /*START & FINISH TIMES.
DT, /*ACTUAL TIME STEP USED.
TIME,

AN.ATBNBT.CNCT, /*PRED-COR ALPHA,BETA,GAMA /1

IVD EXT, /*PLASMA POWER GAIN
(LAMTAU,LAMNEB)EXT,
/*THE FOLLOWING VARIABLES REFER TO THE MOST RECENT TIME */
TAU(*), /*E- TEMPERATURE (NOND BY TE). */
NEB(*), /*ELECTRON DENSITY (NOND BY NR)*/
TDOT1(*), NDOT1(*), /*PREDICTOR STEP TIME DERIV.S /.

((ENE,CNE) INIT(O.8), /*E & C EMITTED DENSITY, NE. */
(ECHI,CCHI) INIT(3), /*EMITTER & COLLECTOR DROPS */
(EALPHA,CALPHA) INIT(O.5) /*E & C ION SPEED PARAMETERS */

) STATIC EXTERNAL,
/*THE FOLLOWING ARE CONSTANT DURING THIS PROGRAM
MUI(O:N+1), /*ION MOBILITY
ONE INIT(1),
I, /*CURRENT (NOND BY REF DIFF C) */
DZ, /*ZETA INCREMENT BETWEEN PTS */
TCHAR, /*AN ELECTRON TRANSIT TIME
ERR, /*ACCURACY PARAM FOR SHEATH */
TE,TC, /*EMITTER & COLLECTOR TEMPERATU*/
DTAUNDZ,
PN, /*NEUTRAL PRESSURE (TORR) */
ENR,CNR, /*E. & C. RICHARSON DENSITIES. */
NR, /*REFERENCE ELECTRON DENSITY */
EGNDB, /*E(O)/KT(E). NON-D BINDING E */
ELOSSB EXT, /*ENERGY LOSS PER IONIZATION */
RE, /*Q(E-A) =Q0 * E**-RE */
SMR, /*SQRT OF ELECTRON/ION MASS RAT*/
LAMDAR, /* MFP RATIO, =RMUR/SMR */
RMUR, /*MU RATIO, =SMR*LAMDAR
KN, /*KNUDSEN NUMBER

~~~~~~~~~.. i i q .~* .
........ °......... ......... . °...... .. .. ... . .. . .
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NNR, /*REFERENCE NEUTRAL DENSITY.

ARECN, /*COEFFICIENT OF RECOMBINATION *1
* PI, /* 3.14159... */

CA,CSAHA, /*CONSTANTS IN MSOURCE EQN */

/*hE FOLLOWING ARE VECTORS (O:N+I). */
(NNB,TAUN, /*NEUTRAL DENSITY & TEMP.

/* NON-D BY ' MITTER VALUES */
* MSOURCE, /*E- PRODUCTION RATE (NOND) */

ESOURCE, /*ENERGY SOURCE TERM (NOND) */
CV,
MUEA, /*E- MOBILITY AMONG ATOMS. */
NDOT2,TDOT2,
TTILDA, NTILDA)

(O:N+) ) FLOAT DEC(16),
CFIX BIT(l) EXT, /*DID C-SHEATH REQUIRE FIX? */
EFIX BIT(l) EXT,
(NSTEPS,
N, /*# OF GRID PTS, E TO C INCL. */
J,

(. COUNT) /*PRESENT */
FIXED BIN(31);

DCL IDEN FIXED BIN(31) EXT;
/*HANDLE EXCEPTIONAL CONDITIONS. */

ON FINISH PUT SKIP(5) DATA;

PI=3.1415926 + 5.3589793E-8;
DZ=ONE/(N-1);
DT=(T2-TI)/NSTEPS;
CFIX,EFIX='O'B;
ERR=IE-3;

/*SET NEUTRAL TEMPERATURE AND DENSITY. */
IF TE=TC THEN TAUN=I;

ELSE DO J=0 TO N+I;
TAUN(J)=I + (TC/TE-1)*(J-1)/(N-1);
END;

NNR=965.5E16*PN/TE;
NNB=I/TAUN;
DTAUNDZ=TAUN(N) -TAUN(I);

/*SET TRANSPORT PARAMETERS. */
RMUR=LAMDAR*SMR;
MUI=SQRT(TAUN);

/*SET IONIZATION AND SAHA PARAMETERS. */
CA=0.41283*ARECN*TCHAR*(NR/IE14)**2 * (TE/1500)**-4.5;
CSAHA=LOG( (1.4027E20*NNR/NR/NR) ( CTE/1500)**1.5);

DO COUNT-0 TO NSTEPS-1;
TIME=T1+COUNT*DT;
/*PREDICTOR STEP */
CALL DOT(NDOT1 ,TDOT1,NEB,TAU);
NTILDA=NEB + AN*DT*NDOT1;
TrILDAfTAU + AT*DT*TDOT1; p
/*CORRECTOR STEP */

IF( AN=O. & AT=O. ) THEN BEGIN;

S............... ........
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NDOT20. ;TDOT20. ;GO TO NOCOR ;END;

NOO:CALL DOT(NDOT2,TDOT2,NTILDA,TrILDA);

NEB=NEB + DT* C BN*NDOT1+CN*NDOT2 )
TAU=TAU + DT* C BT*TDOT1+CT*TDOT2 )

END;
/*UPDATE TIME DERIV.S, IMAGE POINTS, AND FIND PLASMA POWER GAIN*/

CVCO) ,CV(N+1)=O;
* ESOURCE(O) ,ESOURCE(N+1)=O;

CALL DOT(NDOT1 ,TDOT1 ,NEB ,TAU);
IVD= O.5*C ESOURCEC1)-CVC1)*TDOT1(1))

+ SUMV( ESOURCE-CV*TDOT1, 2, N-i)
+O.5*( ESOURCECN)-CVCN)*TDOT1(N) )

IVD=DZ*IVD+ 2*I*CTAUC1).TAU(N)) - CNEBC1)*ENE/KN)*CTAUC1)-l);

* 1 /* DOT: RETURNS WITH NEW NEBDOT AND TAUDOT. *

/* COLLECTOR EMISSION IS NEGLECTED.

/* THERMAL DIFFUSION RATIO IS INCLUDED. *

/*APRIL 2, 1980, (B.C. BASED ON MARCH 1, 1980 VERSION)

DOT: PROCCNEBDOT, TAUDOT, NEB, TAU) REORDER;
DECLARE

CHKDOT BIT(1) EXT INITC'0'B),/*IF 1 PRINT DIAGNOSTIC INFO *
SHEATH ENTRY(DEC(16),DEC(16),DEC(16),DEC(16),DEC(16),

DECC16) ,DECC16) ,DEC(16) ,DEC(16) ,DEC(16)),
CTAUDOT(*),
NEBDOTC*),
NEW(),
TAU(*),

0 PC(O:N+1), /*CHARGED PARTICLE PRESSURE *
F(15) EXT INIT(5.74E-3, 1.4E-3, 2.3, .2, .027, .00574,

.0424, 3.2, 61.893, 11.607, 15473, 27.04),

/*SHEATH VARIABLES
NCMIN, /*MINIMUM NEBCN) TO ALLOW I. *
U,GU,DELU,DGDU,DELTAU,

/*TRANSPORT VARIABLES
FYEN EXT INIT(1), /*YEN THERMAL CONDUCTIVITY FACT*- /
K(0:N+1), /*THERMAL CONDUCTIVITY
MNS, /*SUMf OF MUI*NEB AT J & J+1 *
MUIS,MURS, /*SUM OF MUtI & MUR AT J,J+1 *

/*CONSERVATION EQUATION VARIABLES *
EN_Z,CNZ, /*SPATIAL NEB DERIVS *
ETETA,ETZ,CTETA,CTZ, /*SPATIAL DERIVS OF TAU *
EDETA,CDETA, /*ETA XPACING BETWEEN GRID-PTS *
EPC_Z,CPCZ, /*PC GRADIENT FROM B.C.
NURSOLD ,MNSOLD ,MUI SOLD,

NBCOA,TBCOA,NBCOB ,TBCOB ,NBCOC ,TBCOC, a
NBC1A,TBC1A,NBC1B ,TBC1B ,NBClC ,TBC1C,
NEBACO:N+1) ,NACO:N+1) ,NEBB(O:N+1) ,NB(O:N+1),
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NEBCCO:N+1) ,NCCO,.N+1) ,NEBV(O:N+1) ,ND(O:N+1),
NSCO:N+1) ,TAUA(O:N+1),TA(0:N+I),TAUB(0:N+1),

* TB(O:N+1) ,TAUC(O:N+1) ,TC(O:N+1) ,TAUV(O:N+1) ,TS(O:N+1),
NEBU(O:N+1) ,TAUUCO:N+l),
ALPHA(O:N+1) ,BETA(O:N+1),

/*TEMPORA.RY ENERGY EQUATION VARIABLES
QKM ,QKP,

*DETA,DETAP, /*GRID PT SPACING IN ETA
KDE, /*THERMAL COND X D ETA AVE
CONVECTN,
POHIIIC,
PB,PBP, /*ENERGY STORED IN EXCITED STAT*/
SI GMA)

*FLOAT DEC(16),

/*TEMPORAR~Y DENSITY EQUATION VARIABLES
(GAMMAM ,GAMMAP,
D1B,D21B,D32BPO,IB,NUE, /*PARAMETERS FOR MSOURCE *
A,

C NES2 FLOAT DEC(16),

(J,IJ) FIXED BIN(31);
ON FINISH PUT SKIP(5) DATA;

/*SET THERMAL &ELECTRICAL CONDUCTIVITIES AT 0+ CE) &, 1- (C). *
IF TAUC1)<O.l THEN DO; TAU(l)=0.1; EFIX-'l'B; END;
IF TAU(N)<O.1 THEN DO; TAU(N)=0.1; CFIX&1''B; END;
IF REO0.5 THEN MUEA=TAUN;

ELSE IF RE=O.O THEN MUEA=TAUN/SQRT(TAU);
ELSE IF RE=-.5 THEN MUEA=TAUN/TAU;
ELSE ?IUEA=TAUN*C TAU**(RE-0.5) )

K=-( CRE+2)/FYEN )*MIJEA*NEB*TAU;
PC=NEB*CTAU+TAUN);
DETA,DETAP=LOG(K(2)/K(1)) * DZ/CKC2)-KC1));

/*DETERMINE EMITTER SHEATH
CALL SHEATHECHI,ENE,I*KN/NEB(l),TAUC1),ENR/NEBC1),

TE, SMR, EALPHA, 0.8, ERR);
IF ECHI<=lE-5 I ECHI>=20 THEN EFIX'1'B;

/*FIND EMITTER (0+) DERIVATIVES FROM B.C. *
ETETA=(TAU(1)-1)*ENE*NEBC1)/KN - I*CECHI-TAU1)/2);
ET Z=ET-ETA/IC(i);
EPC_Z=(SQRTCPI/8/EALPHA)/LAMDAR/KN)*NEB(1)/MUIC1)

-I/MUEAC1);

EN IZ=( EPC-Z-NEB(1)*CET -Z+DTAUNDZ) )(TAUC1)+TAUNCI) )
/*SOLVE COLLECTOR SHEATH *

CALPHA=1/TAU (N);
CNE=O;..
U=1.O;GU=G(U) ;DELU-.O1;
CON:DO IJ1l TO 50;

DGDU=(GCU+DELU) -GU) /DELU;
DELTAU=-GU/DGDU;
U=U+DELTAU;
GUG(U);
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IF(ABS(GU)<=.OOO1) THEN GO TO FIN;
END CON;

* PUT SKIP LIST(' COLLECTOR SHEATH FAILED TO CONVERGE');
STOP;

CCHI=O; CFIX='l'B;
GO TO FIN2;
G:PROCCUX) RETURNS(DEC(16));
DCL(UX,GXSQX) DEC(16);

* IF (UX<0O.) THEN SQX-O.;
ELSE SQX=SQRTCUX);
GX=EXP CUX)* Cl. +ERF (SQX) )*2.

-NEBCN)*SQRTCTAU(N) )/I/KN;
RETURN(GX);
END G;

o FIN:CCHI=U*TAU(N);
FIN2:

/*DETERINE DERIVATIVES AT COLLECTOR (1-) FROM B.C. *
CT ETA=-I*(CCHI-TAUCN)/2);
CTZ=CTETA/KCN);
CPC-Z=.SQRT(PI/8/CALPHA)/LAMDAR/KN)*NEBCN)/MUI (N)

-I/MUEACN);

CN-Z=C CPCZ-NEBCN)*CCTZ+DTAUNDZ) )/CTAUCN)+TAUNCN) )
CDETA-LOG(K(N)/K(N-l)) *DZ/CKCN)-K(N-l));

NBCOA=TAU Cl)+TAUN Cl);
NBCOB=SQRT(PI/EALPHA/8. )/LAMDAR/KN/MUI (1) ENE*NEB(1)/K(l)*

* (TAU(l)-l. )-DTAUNDZ;
NBCOC=I*NEB(l)/KC1)*CECHI-TAU(1)/2. )-I/MUEA~l);
NBC lA=TAU(CN) +TAUN (N) ;
NBClB=-SQRT(PI/CALPHA/8. )/LAIIDAR/KN/MUI (N) -CNE*NEBCN)/K(N)*

CTAUCN)-l. )+DTAUNDZ;
NBClC=-I*NEBCN)/KCN)*CCCHI-TAUCN)/2. )-I/MUEACN);

* TBCOA=l.;

TBCOC=-ENE*NEB l) /KN-I*ECHI;
TBClA=-l.;
TBClB=CNE*NEBCN)/KN-I/2.;
TBClC=-CNE*NEB (N) /KN+I*CCHI;

N.EBAO)C(NBCOA*LAMNEB) /(2 .*DZ);
NEBB(O)=-LARNEB*NBCOB;
NEBC CO)=NBCOA*LAMNEB/ (2. *DZ);
NEBVCO)=NBCOB*(l.-LAMNEB)*NEB(l)4NBCOC-(l. -LAMNEB)*

NBCOA*(NEB(2)-NEBCO))/C2.*DZ);
TAUA(O)=TBCOA*LAMTAU/ (2 .*DETAP);
TAUBCO )=-LA11TAU*TBCOB;
TAUCCO)=-TBCOA*LA4TAU/ (2 .*DETAP);
TAUV(O)=-TBCOB*(1.-LAMTAU)*TAU(1)+TBCOC-Cl.-LAMTAU)*

TBCOA*CTAU(2)-TAUCO))/(2.*DETAP);

NEBACN+l)=CNBC1A*LAINEB)/C2.*DZ);
NEED (N+1 )=-LANNEB*NBCIB;
NEBC(N+l).-NBClA*LAMNEB/ (2.*DZ);
NEBVCN+1)=NBClB*l..LAMNEB)*NEB(N)+NBClC-(l.-LAMNEB)*
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NBC1A*(NEBCN+1)-NEB(N-1))/C2.*DZ);
TAUA(N+1)=TBClA*LAMTAU/ (2.*CDETA);
TAUB (N+1 )-LAHTAU*TBC iB;
TAUC(N+1)=-TBClA*LAMTAU/ (2.*CDETA);
TAUV(Ntl)=TBCIB*C1. -LAMTAU)*TAUCN)+TBCIC-(1.-LAMTAU)*

TBClA*CTAU(N+1)-TAU(N-1))/(2.*CDETA);

/*INITIALIZE GAMMAP & QKP FOR LOOP.
MNS=MUI(1)*NEB(1)+MUI(2)*NEBC2);
MURS=MUI(2)/MUEA(2) + MUI(1)/MUEA(1)*( 1 -2*DZ*(

(O.5-RE)*ET Z/TAU(1) - O.5*DTAUNDZ/TAUN(1)) )
GAMMAP=- 0.5*( ( (MUI(1)+HMUI( 2 ))*(PC( 1 )-PCCO))

)/DZ +I*HURS )
QKPC(TAU(1) -TAU (0))/DETA;
MUIS=MUI C1)+MUI (2);

DO J1l TO N;
/*UPDATE FOR NEW J. *
GAMMAM="GAMMAP;
QKM=QKP;
DETA=DETAP;
MNSOLD=MNS;
MUISOLDIIMUIS;
MURSOLD=-MURS;
IF J-N

THEN DO;
DETAP=LOG(K(J+1)/K(J)) *DZ/(KCJ+1)-KCJ));

* MNS=MUI (J) *EB (J)+MUI (J+1 )*EB (J+1);
MUIS=HUI(J)+IUI(J+1);
MURS=MUI(J)/MUEA(J) + HUICJ+1)/MUEACJ+1);
END;

ELSE
MURS=MURS +2*DZ*CMUjICN)/M.UEAN))*C(.5-RE)*CTZ/TAU(N)

S - O.S*DTAUNDZ/TAUNCN));-
/*FIND AMBIPOLAX FLUX AT J+1/2. *
GAMMAPO0.5*( ( HUIS*(PCCJ+1)-PCCJ))

)/DZ +I*NIJRS )
/*FIND MASS SOURCE AT J. *
A=CA/TAUCJ)**4.5;
NES2=NNB(J) * TAUCJ)**1.5 * EXP( CSAHA-EGNDB/TAUCJ) )
D21B=F(7)*C1+FC8)/TAUCJ));
D32B=F2)*EXPCFC3)/TAU(J));
IB=A*NES2*C 1+F(1)/NEB(J) /(1+D21B*C1+D32B/NEBCJ))/NEBCJ)

PO=1+( F(4)/NEB(J) )*( 1+FC5)/NEB(i) )(1+FC6)/NEBCJ) )
NUE=NEB (J)*NEB (J) /NES2;
ZSOURCEJ)=NEBCJ)*IB*( 1-PO*NUE )

IFCIDEN1l) THEN
MSOURCE (J)=NEB CJ)*A*NES2;

NEBDOT(J)=RMUR*(GAMMAP-GAMMAN)/DZ +MSOURCE(J);

NACJ)-RUR*MUIS*CTAU(J+1)+TAUNCJ+1))/2. /DZ**2;

NBCJ)=RMUR*(MUIS+MUISOLD)*(TAU(J)+TAUNCJ))/2. /DZ**2;
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NC(J)=RU*MUISOILD*CTAU(J-1)+TAUN(J-1))/2./DZ**2;
NDCJ)=I*(11URS-MURSOLD)*RMUR/DZ/2.;
NSCJ)=IB*(l.-PO*NUE);
IF(IDEN=l) THEN
NS (J)=A*NES2;

NEBA(J)=-DT*NACJ)*LAMNEB;
NEBBCJ)=l.+DT*NB(J)*LAI1NEB-DT*NS(J)*LA1NEB;
NEBC (J)=-DT*NC CJ)*J4JNEB;
NEBV(J)=NEB(J)+DT*NA(J)*(l. -LAMNEB)*NEB(J+1)-DT*NBCJ)*

(1. -LAMNEB)*NEBCJ)+DT*NC(J)*(l. -LAMNEB)*NEB(J-1)+
DT*ND(J)+DT*NS(J)*(l. .LAMNEB)*NEB (3);

KDE=KCJ)*(DETA+DETAP)/2;
QKP=(TAU(J+1) -TAUCJ) )/DETAP;

CONVECTN=-(1.5 )*I*(DETA*QKP+DETAP*QKM.)/ (2*KDE);
SIGMA=NEBCJ)*MUEA(J);
PQHIICI*( I/SIGMA + TAUCJ)*( NEB(J+1)-NEBCJ-1))

/(2*DZ*NEBCJ)));
( PBPC( FC9)*NNRINR )*EXPC -F(1O)/TAUCJ) )

PB=( F(11)*NNR/NR )*EXP( -F(12)/TAU(J) )
CV(J)=1.5*NEB(J) + NB(J)*F(1)*PBP+F12)*PB*NJE)

/(TAUCJ)*TAU(J));
ESOURCE (J)=-ELOSSB*MSOURCE CJ)

-NNBCJ)*PB*( 2*NUE*NEBDOTCJ)/NEB(J) )

* ~TAUDOTCJ)=C CQKP-QFKN)/KDE + CONVECTN + POHMIC + ESOURCE(J))
/CVCJ);

TACJ)1 . / DETAP*KDE*CV(J));
TB(J)=(1. /DETAP+1 ./DETA)/KDE/CV(J);
TC(J)l. /DETA/KDE/CV(J);

* TSCJ)=CCONVECTN+PQHMIC+ESOURCECJ))/CV(J);
TAUACJ)=-DT*LANTAU*TACJ);
TAUBCJ)=1 .+DT*LAIITAU*TB (J);
TAUC(J)=-DT,*LAMTAU*TC (3);
TAUV(J)=TAUCJ)+DT*(l. -LANTAU)*TA(J)*TAJCJ+l)

-DT*C1. -LAMTAU)*TBCJ)*TAU(J)
( +DT -c1. -LAMTAU)*TCCJ)*TAU(J-1)

+TS CJ)*DT;

IF CI{KDOT THEN PUT SKIPC2) DATA(NEB(J),TAU(J),MSOURCE(J),
J,PB,PBP,A,

IcD21B,D32B,PO,IB,NUE,NES2,QKP,GAMMAP,DETAP,MURS);
END;

NEBCCO)=NEBCO)-NEBC1)*N.EBACO)/NEBAC1);
NEBB(O)=NEBB(O) -NEBB(1)*NEBA(O)/NEBAC1);

( NEBVCO)=NEBVCO)-NEBVC1)*NEEA(O)/NEBAC1);
NEBA(O)=NEBB (0);
NEBBCO)=NEBC(O);
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NEBACN+1)=NEBA(N+1)-NEBA(N)*NEBC(N+1)/NEBCCN);
NEBBCN+1)=NEBBCN+1)-NEBBN)*NEBCN+1)/NEBCCN);
NEBVCN+1)=NEBV(N+1)-NEBV(N)*NEBC(N+1)/NEBC(N);r. NEBC(N+1)=NEBB(N+1);
NEBE (N+1 )NEBA (N+1);

TAUCCO)=TAUCCO)-TAUC(1)*TAUA(O)/TAUAC1);
TAUB(O)=TAUBO).TAUB(1)*TAUA(O)/TAUAC1);
TAUVCO)=TAUVCO)-TAUV(1)*TAUA(O)/TAUAC 1);

* TAUACO)-TAUB(O);
TAUBCO)=TAUC(O);
TAUA(N+1)=TAUACN+1)-TAUA(N)*TAUC(N+1)/TAUCCN);
TAUBCN+1)=TAUBCN+1)-TAUB(N)*TAUC(N+1)/TAUC(N);
TAUVCN+1)=TAUV(N+1)-TAUV(N)*TAUC(N+1)/TAUC(N); !

TAUCCN+1)=-TAUB(N+1);
o TAUBCN+1)=TAUA(N+1);

ALPHA CO)=-NEBACO)/NEBB(O);
LOOP1:DO J1l TO N;

ALPHACJ)=-NEBA(J)/(NEBCCJ)*ALPHACJ-1)+NEBB(J));
END LOOPi;
ALPHACN+1)0O.;
BETA CO)=NEBVCO)/NEBB(O);
LOOP2:DO J1l TO (N+1);
BETACJ)C(NEBVJ)-NEBCJ)*BETAJ-1))/(NEBCJ)*ALP{A(J-1)+NEBBCJ));

END LOOP2;
NEBU(N+1)=BETA(N+1);-

* LOOP3:DO J=N TO 0 BY(-1);
NEBUCJ)=ALPHA(J)*NEBUCJ+1)+BETACJ);

END LOOP3;

ALPHACO)=-TAUA(O)/TAUBCO);
LOOP4:DO 3=1 TO N;

* ALPHACJ)=-TAUACJ)/CTAUC(J)*ALPHACJ-1)+TAUBCJ));
END LOOP4;
ALPHA(N+1)0O.;
BETA(O)=TAUVCO)/TAUB(O);
LOOPS:DO 3=1 TO (N+1);
BETA(J)=(TAUV(J)-TAUC(J)*BETACJ-1))/CTAUCCJ)*ALPHA(J-1)+TAUB (3));

C END LOOP5;
TAUUCN+1)=BETA(N+1);
LOOP6:DO J=N TO 0 BYC-l);

TAUU (3)=ALPHA CJ) *TAUU (3+1) +BETA (3)
END LOOP6;

NEBDOT -(NEBU-NEB) /DT;

TAUDOT-(TAUU-TAU) /DT;
IF CHKDOT THEN PUT SKIPC3) DATA;
END DOT;
END PREDCOR;
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C.2 SHEATH: Copue the Sheath Model Solution

SHEATH:PROC(OUTCHI ,OUTNE ,INCUR,INTAU ,INNRNP,INTE, INMEMI,
OUTALP, INDUM, INERR);
DCLCJBAR,INCUR,CE,INTAU,NRP,INNRNP,TE,INTE,SMR,INHEMI ,ERR,

UZERO,
PHIZ,INDUM,INERR,CI,PHIM,OUTCHI,NEB,OUTNE,OUTALPVI)
DEC(16);

UZERO=2.1;
CE=INTAU;
JBAR=INCUR*2./SQRTC3. 14159)*SQRT(2./CE);

* NRP=INNRNP;
TE=INTE;
SMR=INMEMI; /* SQUARE ROOT OF MASS RATIO *
ERR=INERR;
CI=I.;

C PHIM=REPHIIICJBAR,CE,CI);

NEB=RENEB(JBAR,PHIII,CE,CI);
PHIZ=LOG(INNRNP/NEB);
VI=REVI(UZERO,PHIZ,PHIM,CE,CI);
IF(VI<=.001) THEN V1=.0O1;

* OUrCHI=PHII;
OUTNE=NEB;
OUTALP=I. /CE! CVI )*2;

RETURN;

* REPHIM:PROCCTJBAR,TCE,TCI) RETURNS( DEC(16));
DCL(TJBAR,TCE ,TCI ,TPHIM,TA,TB) DEC(16);
TAC(.5000*SQRTC2. )-.29O0*SQRT(1. ))/

(SQRT(2. )-SQRTC1.));
TB=(.5000-.2900)f(SQRTC1./l.)-SQRTC1./2.));
TPHIM=(TB/CTA-TJBAR) )**2 *TCE/2.1;

C RETURN(TPHIM);
END REPHIM;

RENEB:PROC(TJBAR,TPHIM,TCE,TCI) RETURNS( DEC(16));
DCLCTJBAR,TCE ,TCI ,TNEB ,TPHIM,SQRTPI ,SQRTCE ,SQPI{CE,

Cl,C2,EXPHCE) DEC(16);
SQRTPI=SQRTC3.1415926);
SQRTCE=SQRT (TCE);
SQPHCE=SQRT(TPHIM/TCE);
C11 .+ERF(SQPHCE.);
IF(TPHIM>1O.) THEN

C2=0.;
C ELSE .

C2=EXPCTPHII)*C 1. -ERF(SQRT(TPHIM)) )
EXPHCE=EXP (-TPHIM/TCE);
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TNEB=(TJBAR*SQRT(TCE/2. )+SQRTCE/C1*EXPHCE/SQRTPI)/
(1 ./SQRTPI+SQRTCE/SQRTPI*C2/C1*EXPHCE);

* RETURN(TNEB);
END RENEB;

REVI:PROC(TUZERO,TPHIZ,TPHIM,TCE,TCI) RETURNS( DEC(16));
DCL(TUZERO,TPHIZ,TPHIM,TCE,TCI,TVI,R) DEC(16);

* IF(TPHIZ-TPHIH>O.) THEN R=SQRT( (TPHIZ-TPHIM)/TCI);
TVI=SQRTC2.*TCI/TCE)*( TUZERO*SQRT(3.14)/2.*C1.-ERF(R-TUZERO))

+ EXP(-(R-TUZERO)**2)/2. )(SQNT(3.l4)/2.*(1-ERF(-TUZERO)));
RETURNCTVI);
END REVI;

*END SHEATH;

0 .
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